[车道线检测]Ultra Fast Structure-aware Deep Lane Detection

本文提出了一种新的车道线检测方法,它将检测视为利用全局特征在预定义行上选择车道的位置,而非像素级分割。通过引入结构损失函数,该方法能够利用车道线的刚性和平滑性先验知识,并通过全局信息处理无视觉线索的情况。此外,通过特征聚合和二阶差分约束,模型能够更好地捕捉车道线的连续性和直线形状。然而,这种方法的局限性在于其预设的车道线类别数量,可能无法适应场景变化大的情况。
摘要由CSDN通过智能技术生成

原文地址:https://arxiv.org/abs/2004.11757
将车道线检测看作一个利用全局特征进行row-based selecting 的问题。

Introduction
  1. 车道线检测分为传统图像处理方法和深度分割方法。需要实时性,因此需要低计算量的算法。
  2. 车道线检测的另一个难点是复杂场景例如severe occlusion或者是extreme lighting conditions。对于这个问题需要更高水平的语义分析。
  3. 已有的分割方法不能利用车道线的先验知识(例如rigidity and smoothness)
How

Specifically, our formulation is proposed to select locations of lanes at predefined rows of the image using global features instead of segmenting every pixel of lanes based on a local receptive field,

  1. 利用全局信息,在predefined rows的anchors上面进行选择,而不是利用局部感受野分割每一个pixel。同时,因为利用了全局信息还可以帮助解决no-visual-clue问题。
  2. 提出一个structural loss,显式地利用了车道线的先验知识。
New formulation for lane detection

在模型中,车道线被看作是一系列水平坐标点构成的,每个坐标点在预先定义的行中,这些rows被看作是row anchors。首先需要把图片gridding,每个row anchor中,location被划分为许多个cells,车道线检测也就变成了在row anchors里面选择合适的cell,拼接成一条车道线。
P i , j = f i j ( X ) , i ∈ [ 1 , C ] , j ∈ [ 1 , h ] , P ∈ R C × h × ( w + 1 ) P_{i,j} = f^{ij}(X), i \in [1,C], j\in[1,h], P\in R^{C \times h \times(w+1)} Pi,j=fij(X),i[1,C],j[1,h],PRC×h×(w+1)
C是车道线数量,h是预先设定的row anchors的数量,w是每个row包含的cells数量。也就是说,对每条线的每一行,每个cell属于这条线的概率。同时,target可以表示成
T ∈ R C × h × ( w + 1 ) T \in R^{C \times h \times (w+1)}

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要复现"ultra fast structure-aware deep lane detection"代码,首先需要了解该算法的原理和网络结构。该算法是一种深度学习方法,用于车道线检测。其核心思想是结合结构感知机制和快速推理策略,以实现高效、准确的车道线检测。 为了复现该算法,需要完成以下步骤: 1. 数据集准备:收集车道线数据集并进行相应的标注。可以使用公开数据集,如CULane或TuSimple等,或者自己采集数据集。数据集应包含车道线图像以及对应的标注信息。 2. 网络结构构建:根据论文中提到的网络结构,构建模型。根据论文中的说明,可以选择使用FCN、UNet等结构。确保灵活地调整网络的深度和宽度,以适应不同的数据集和性能要求。 3. 损失函数定义:根据论文中的介绍,选择适当的损失函数,如二分类交叉熵损失函数等,以最小化预测标注和真实标注之间的差异。 4. 数据预处理:对输入图像进行预处理,如图像归一化、resize等,以适应网络的输入要求。 5. 模型训练:使用准备好的数据集和网络结构,进行模型的训练。设置合适的超参数,如学习率、批大小等。通过迭代优化网络参数,使模型逐渐学习到车道线的特征。 6. 模型评估:使用测试集对模型进行评估,计算准确率、召回率、F1得分等指标,以评估模型的性能。 7. 代码测试:使用测试集对复现的代码进行测试,观察模型的预测结果。可进行可视化展示,比较模型的预测结果与真实标注的差距。 8. 优化和改进:根据测试结果和需要,对网络结构、超参数等进行调整和优化,进一步提升模型性能。 通过以上步骤,就可以较为全面地复现"ultra fast structure-aware deep lane detection"代码,从而实现高效、准确的车道线检测算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值