什么是等价无穷小?
emmm
一般所说的等价无穷小
特指x→0时可以互相拿来替换的函数
大概就是下面这一坨
看起来还算比较友好,对吧?
这就引出了下面的问题
它们是如何出现的?
可以很容易看出
在x=0附近,这些函数曲线几乎重合
为什么会这样?
要继续探讨,就不得不提到泰勒级数
泰勒级数
就是下面这一坨
泰勒级数的作用是在某一点使用多项式对某一函数近似拟合
原理:
就是保证多项式的每一阶导数都等于原函数(包括零阶,也就是零点的函数值)
为什么还有个阶乘?
因为幂级数求导本身自带 “buff” 加成
比如求 x^10 的10阶导数
结果刚好是10的阶乘
除以阶乘就是为了抵消幂级数自带的 “buff” 影响
其实还有个东西叫做泰勒多项式
就是把上面的 ∞ 换成一个具体的数,比如λ
可以把泰勒级数看作泰勒多项式的极限状态(趋于无穷嘛)
有一点像积分与求和的关系......
二者的联系
说了半天,泰勒级数和等价无穷小有啥关系
可以这么说,等价无穷小就是“阉割版”的泰勒级数,是泰勒级数的“低精度版本”
举个例子:
现在要你用 x^2 构造函数,使其在x=0处能够近似代替y=x,应该怎么做?
想想泰勒级数
用一个函数拟合另一个函数(在某一点附近)
其实就是让二者的各阶导数相同(相同的阶数越多,拟合程度越好)
因为不需要特别高的精度
我们只取0阶(就是该点函数值)和1阶导数
首先(x^2)在x=0处的值就是零,y=x在x=0处的值也是零,不用管
而一阶导数 (x^2) ' = 2x,代入0得0,与y=x导数为1不同
怎么办?加一个x不就好了,这样 (x^2+x) '=2x+1,代入0得1
结果就是在x=0附近,可以用 y=x^2+x 近似代替y=x
至于其他的像 e^x-1,ln(1+x)等等,都是一个思路
也可以理解为拿这个函数去往y=x上贴,让y=x成为这个函数的切线
而像sinx,arcsinx,tanx,arctanx
他们本身就满足0阶和1阶导分别等于0和1(在x=0处)
也就是y=x刚好是他们在0处的切线,根本就不需要动
上面这些算是“逆向”泰勒变换,用已有函数去逆向近似y=x这个多项式(其实它有2项,常数项是0 看不出,实际应该是y=0+x)
反过来你会发现,它们的泰勒展开式前两项刚好就是y=0+x,即y=x
还有一些直接正向泰勒展开再整理的,比如:
就是下面的式子取前两项再整理(这与我们取0阶和1阶导精度一致)
总结
说来说去,最后其实就是泰勒级数