泰勒公式是理解等价无穷小的关键。让我们从泰勒公式出发,详细解释等价无穷小的概念。
1. 泰勒公式回顾
设函数 f ( x ) f(x) f(x) 在 x 0 x_0 x0 处具有 n + 1 n+1 n+1 阶导数,则其在 x 0 x_0 x0 附近的泰勒展开式为:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x) f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯+n!f(n)(x0)(x−x0)n+Rn(x)
其中 R n ( x ) R_n(x) Rn(x) 是余项,表示展开式中被忽略的高阶项。常用的余项形式包括拉格朗日余项和柯西余项。 当 x x x 趋于 x 0 x_0 x0 时,如果余项 R n ( x ) R_n(x) Rn(x) 比 ( x − x 0 ) n (x-x_0)^n (x−x0)n 具有更高的阶,那么我们可以用前 n n n 项来近似 f ( x ) f(x) f(x)。
2. 等价无穷小的定义
设 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 是定义在 x 0 x_0 x0 的邻域内的两个函数,且 lim x → x 0 f ( x ) = 0 \lim_{x \to x_0} f(x) = 0 limx→x0f(x)=0 和 lim x → x 0 g ( x ) = 0 \lim_{x \to x_0} g(x) = 0 limx→x0g(x)=0。如果
lim x → x 0 f ( x ) g ( x ) = 1 \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 x→x0limg(x)f(x)=1
则称 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 为 x → x 0 x \to x_0 x→x0 时等价无穷小,记作 f ( x ) ∼ g ( x ) ( x → x 0 ) f(x) \sim g(x) (x \to x_0) f(x)∼g(x)(x→x0)。
3. 泰勒公式与等价无穷小的联系
当 x → x 0 x \to x_0 x→x0 时,如果我们考虑泰勒展开式中 x − x 0 x-x_0 x−x0 的低阶项,并忽略高阶余项,那么就可以得到等价无穷小。
具体来说,如果 f ( x 0 ) = 0 f(x_0) = 0 f(x0)=0 且 f ′ ( x 0 ) ≠ 0 f'(x_0) \ne 0 f′(x0)=0,则根据泰勒公式的一阶展开:
f ( x ) = f ′ ( x 0 ) ( x − x 0 ) + R 1 ( x ) f(x) = f'(x_0)(x-x_0) + R_1(x) f(x)=f′(x0)(x−x0)+R1(x)
由于 lim x → x 0 R 1 ( x ) x − x 0 = 0 \lim_{x \to x_0} \frac{R_1(x)}{x-x_0} = 0 limx→x0x−x0R1(x)=0,所以当 x → x 0 x \to x_0 x→x0 时, f ( x ) f(x) f(x) 与 f ′ ( x 0 ) ( x − x 0 ) f'(x_0)(x-x_0) f′(x0)(x−x0) 等价,即:
f ( x ) ∼ f ′ ( x 0 ) ( x − x 0 ) ( x → x 0 ) f(x) \sim f'(x_0)(x-x_0) \quad (x \to x_0) f(x)∼f′(x0)(x−x0)(x→x0)
这说明,在 x 0 x_0 x0 附近, f ( x ) f(x) f(x) 可以用其在 x 0 x_0 x0 处的线性近似来代替,而这个线性近似就是其等价无穷小。
更一般地,如果 f ( x 0 ) = f ′ ( x 0 ) = ⋯ = f ( k − 1 ) ( x 0 ) = 0 f(x_0) = f'(x_0) = \dots = f^{(k-1)}(x_0) = 0 f(x0)=f′(x0)=⋯=f(k−1)(x0)=0 且 f ( k ) ( x 0 ) ≠ 0 f^{(k)}(x_0) \ne 0 f(k)(x0)=0,则根据泰勒公式的 k k k 阶展开,我们可以得到:
f ( x ) ∼ f ( k ) ( x 0 ) k ! ( x − x 0 ) k ( x → x 0 ) f(x) \sim \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k \quad (x \to x_0) f(x)∼k!f(k)(x0)(x−x0)k(x→x0)
这意味着 f ( x ) f(x) f(x) 与 f ( k ) ( x 0 ) k ! ( x − x 0 ) k \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k k!f(k)(x0)(x−x0)k 等价。
4. 等价无穷小的应用
等价无穷小的概念在求极限时非常有用,因为它可以简化计算。 我们可以用等价无穷小替换原函数,从而化简复杂的表达式,使得求极限更加容易。 例如,计算 lim x → 0 sin x x \lim_{x \to 0} \frac{\sin x}{x} limx→0xsinx,由于 sin x ∼ x ( x → 0 ) \sin x \sim x (x \to 0) sinx∼x(x→0),所以:
lim x → 0 sin x x = lim x → 0 x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x}{x} = 1 x→0limxsinx=x→0limxx=1
常见的等价无穷小主要基于一些基本初等函数在零点附近的泰勒展开。以下列举一些常见的等价无穷小,并给出推导过程(证明):
1. 三角函数:
-
sin x ∼ x \sin x \sim x sinx∼x ( x → 0 x \to 0 x→0)
证明: 利用 sin x \sin x sinx 在 x = 0 x=0 x=0 处的泰勒展开:
sin x = x − x 3 3 ! + x 5 5 ! − … \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots sinx=x−3!x3+5!x5−…
当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 sin x ≈ x \sin x \approx x sinx≈x。更精确地说,
lim x → 0 sin x x = lim x → 0 ( 1 − x 2 3 ! + x 4 5 ! − … ) = 1 \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \left( 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots \right) = 1 x→0limxsinx=x→0lim(1−3!x2+5!x4−…)=1
因此, sin x ∼ x \sin x \sim x sinx∼x ( x → 0 x \to 0 x→0)
-
tan x ∼ x \tan x \sim x tanx∼x ( x → 0 x \to 0 x→0)
证明: 类似地,利用 tan x \tan x tanx 在 x = 0 x=0 x=0 处的泰勒展开:
tan x = x + x 3 3 + 2 x 5 15 + … \tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots tanx=x+3x3+152x5+…
当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 tan x ≈ x \tan x \approx x tanx≈x。 更精确地说,
lim x → 0 tan x x = 1 \lim_{x \to 0} \frac{\tan x}{x} = 1 x→0limxtanx=1
因此, tan x ∼ x \tan x \sim x tanx∼x ( x → 0 x \to 0 x→0)
-
arcsin x ∼ x \arcsin x \sim x arcsinx∼x ( x → 0 x \to 0 x→0)
证明: 利用 arcsin x \arcsin x arcsinx 在 x = 0 x=0 x=0 处的泰勒展开:
arcsin x = x + x 3 6 + 3 x 5 40 + … \arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + \dots arcsinx=x+6x3+403x5+…
类似地,当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 arcsin x ≈ x \arcsin x \approx x arcsinx≈x。 更精确地说,
lim x → 0 arcsin x x = 1 \lim_{x \to 0} \frac{\arcsin x}{x} = 1 x→0limxarcsinx=1
因此, arcsin x ∼ x \arcsin x \sim x arcsinx∼x ( x → 0 x \to 0 x→0)
-
arctan x ∼ x \arctan x \sim x arctanx∼x ( x → 0 x \to 0 x→0)
证明: 利用 arctan x \arctan x arctanx 在 x = 0 x=0 x=0 处的泰勒展开:
arctan x = x − x 3 3 + x 5 5 − … \arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots arctanx=x−3x3+5x5−…
类似地,当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 arctan x ≈ x \arctan x \approx x arctanx≈x。 更精确地说,
lim x → 0 arctan x x = 1 \lim_{x \to 0} \frac{\arctan x}{x} = 1 x→0limxarctanx=1
因此, arctan x ∼ x \arctan x \sim x arctanx∼x ( x → 0 x \to 0 x→0)
2. 指数函数和对数函数:
-
e x − 1 ∼ x e^x - 1 \sim x ex−1∼x ( x → 0 x \to 0 x→0)
证明: 利用 e x e^x ex 在 x = 0 x=0 x=0 处的泰勒展开:
e x = 1 + x + x 2 2 ! + x 3 3 ! + … e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots ex=1+x+2!x2+3!x3+…
所以 e x − 1 = x + x 2 2 ! + x 3 3 ! + … e^x - 1 = x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots ex−1=x+2!x2+3!x3+…。 当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 e x − 1 ≈ x e^x - 1 \approx x ex−1≈x。 更精确地说,
lim x → 0 e x − 1 x = 1 \lim_{x \to 0} \frac{e^x - 1}{x} = 1 x→0limxex−1=1
因此, e x − 1 ∼ x e^x - 1 \sim x ex−1∼x ( x → 0 x \to 0 x→0)
-
ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x ( x → 0 x \to 0 x→0)
证明: 利用 ln ( 1 + x ) \ln(1+x) ln(1+x) 在 x = 0 x=0 x=0 处的泰勒展开:
ln ( 1 + x ) = x − x 2 2 + x 3 3 − … \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots ln(1+x)=x−2x2+3x3−…
当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 ln ( 1 + x ) ≈ x \ln(1+x) \approx x ln(1+x)≈x。 更精确地说,
lim x → 0 ln ( 1 + x ) x = 1 \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 x→0limxln(1+x)=1
因此, ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x ( x → 0 x \to 0 x→0)
3. 其他:
-
( 1 + x ) α − 1 ∼ α x (1+x)^\alpha - 1 \sim \alpha x (1+x)α−1∼αx ( x → 0 x \to 0 x→0) ( α \alpha α 为常数)
证明: 利用二项式定理展开 ( 1 + x ) α (1+x)^\alpha (1+x)α,得到:
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + … (1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots (1+x)α=1+αx+2!α(α−1)x2+…
所以 ( 1 + x ) α − 1 = α x + α ( α − 1 ) 2 ! x 2 + … (1+x)^\alpha - 1 = \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots (1+x)α−1=αx+2!α(α−1)x2+…。 当 x → 0 x \to 0 x→0 时,高阶项可以忽略,所以 ( 1 + x ) α − 1 ≈ α x (1+x)^\alpha - 1 \approx \alpha x (1+x)α−1≈αx。 更精确地说,
lim x → 0 ( 1 + x ) α − 1 x = α \lim_{x \to 0} \frac{(1+x)^\alpha - 1}{x} = \alpha x→0limx(1+x)α−1=α
因此, ( 1 + x ) α − 1 ∼ α x (1+x)^\alpha - 1 \sim \alpha x (1+x)α−1∼αx ( x → 0 x \to 0 x→0)
推论:
这些等价无穷小可以组合使用,但需要谨慎,例如等价无穷小不能直接用于加减运算。 例如,虽然 sin x ∼ x \sin x \sim x sinx∼x 和 cos x − 1 ∼ − x 2 / 2 \cos x -1 \sim -x^2/2 cosx−1∼−x2/2 (x趋于0),但这并不意味着 sin x + cos x − 1 ∼ x − x 2 / 2 \sin x + \cos x - 1 \sim x - x^2/2 sinx+cosx−1∼x−x2/2。
以下是一些等价无穷小在更高级数学分析中的应用例子,题目难度较高,需要扎实的微积分和分析基础。 这些题目并非单纯的“代数技巧”,而是需要深入理解等价无穷小的本质和局限性。
题目一:渐近展开与积分
设 f ( x ) = ∫ 0 x e − t 2 1 + t 2 d t f(x) = \int_0^x \frac{e^{-t^2}}{1+t^2} dt f(x)=∫0x1+t2e−t2dt. 求 f ( x ) f(x) f(x) 当 x → 0 + x \to 0^+ x→0+ 时的渐近展开,直到 x 5 x^5 x5 项。
解题思路: 不能直接对被积函数进行等价无穷小替换,因为积分区间是变量。 需要先对被积函数进行泰勒展开,然后进行逐项积分。 e − t 2 = 1 − t 2 + t 4 / 2 + O ( t 6 ) e^{-t^2} = 1 - t^2 + t^4/2 + O(t^6) e−t2=1−t2+t4/2+O(t6) 且 1 / ( 1 + t 2 ) = 1 − t 2 + t 4 + O ( t 6 ) 1/(1+t^2) = 1 - t^2 + t^4 + O(t^6) 1/(1+t2)=1−t2+t4+O(t6),然后将展开式乘起来,再积分。 最后结果会包含积分常数,但因为积分从0开始,常数为0。
题目二:广义积分与等价无穷小
判断下列广义积分是否收敛,并说明原因:
∫ 0 1 sin ( x ) x ln ( 1 + x ) d x \int_0^1 \frac{\sin(\sqrt{x})}{x\ln(1+x)} dx ∫01xln(1+x)sin(x)dx
解题思路: 需要分析被积函数在 x → 0 + x \to 0^+ x→0+ 时的行为。 使用等价无穷小替换: sin ( x ) ∼ x \sin(\sqrt{x}) \sim \sqrt{x} sin(x)∼x, ln ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)∼x。 则被积函数近似于 x x 2 = x − 3 / 2 \frac{\sqrt{x}}{x^2} = x^{-3/2} x2x=x−3/2。 积分 ∫ 0 1 x − 3 / 2 d x \int_0^1 x^{-3/2} dx ∫01x−3/2dx 发散,所以原积分也发散。 需要严谨的证明,利用比较判别法或极限比较判别法。
题目三:级数求和与等价无穷小
设 a n = n 2 e n 3 − 1 a_n = \frac{n^2}{e^{n^3} - 1} an=en3−1n2. 研究 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n ∑n=1∞an 的收敛性,并尝试求出其近似值(至少精确到小数点后一位)。
解题思路: 对于大的 n n n, e n 3 − 1 ∼ e n 3 e^{n^3} - 1 \sim e^{n^3} en3−1∼en3,所以 a n ∼ n 2 e n 3 a_n \sim \frac{n^2}{e^{n^3}} an∼en3n2。 这看起来像是一个收敛的级数(可以与一个收敛的级数进行比较判别法)。 然而,直接求和很困难。 可以尝试使用积分估计法,将级数和转化为积分,再利用等价无穷小估计积分值。
题目四:微分方程与渐近解
求解下列微分方程在 x → ∞ x \to \infty x→∞ 时的渐近解:
x y ′ ′ + y ′ + x y = 0 xy'' + y' + xy = 0 xy′′+y′+xy=0
解题思路: 这是一个贝塞尔方程的变体。 需要运用渐近分析的技巧,例如WKB方法。 这种方法利用等价无穷小思想,将解表示为指数函数乘以一个幂级数的形式,然后通过代入微分方程确定幂级数的系数。 这需要对特殊函数和渐近分析方法有深入的理解。
答案: 由于这些题目涉及到较长的计算过程和分析,这里只给出一些关键步骤和结果的提示,完整的解答需要大量的篇幅:
- 题目一: f ( x ) ≈ x − x 3 3 + x 5 10 + O ( x 7 ) f(x) \approx x - \frac{x^3}{3} + \frac{x^5}{10} + O(x^7) f(x)≈x−3x3+10x5+O(x7)
- 题目二: 发散
- 题目三: 收敛,近似值很小,需要数值方法辅助计算。 积分估计法是关键。
- 题目四: 渐近解的形式为 y ( x ) ∼ A cos ( x + ϕ ) / x y(x) \sim A \cos(x + \phi) / \sqrt{x} y(x)∼Acos(x+ϕ)/x,其中A和 ϕ \phi ϕ是待定常数,取决于初始条件。 需要运用WKB方法或其他渐近分析技巧。
这些题目需要运用高等微积分、实分析和复分析的知识,并且需要熟练掌握等价无穷小及其在渐近分析中的应用。 仅仅给出答案是不够的,完整的解题过程需要详细的推导和解释。 建议查阅相关书籍,例如关于渐近分析和特殊函数的教材。