【信号与系统】如何理解公式:r(t)=e(t)﹡h(t)

本文详细阐述了线性时不变系统(LTI)的三个基本特性,包括线性叠加、时不变性和微分特性,并通过卷积运算的性质证明,任何信号与冲激信号的卷积等于自身。重点介绍了如何利用阶跃函数和单位冲激信号来推导这一结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于公式
在这里插入图片描述
首先我们需要知道它成立的前提条件是系统为线性时不变(LTI)系统

而对于LTI系统,它满足线性(叠加性、均匀性),时不变特性以及微分特性

1.线性:系统输入E1对应输出R1,输入E2对应输出R2;信号C1E1+C2E2输入系统后得到的输出为C1R1+C2R2

2.时不变特性:系统输入 E(t) 对应输出 R(t),信号 E(t-t0) 输入系统后得到的输出为 R(t-t0)

3.微分特性:系统输入E对应输出R,信号E(n)输入系统后得到的输出为R(n)


对于卷积这种运算,它满足一条性质:任何信号和冲激信号相卷得到的都是该信号本身,即:
在这里插入图片描述
也即:
在这里插入图片描述
证明

任意信号 f(t) 都可写成无数个矩形脉冲信号叠加的形式,而矩形脉冲可以用阶跃信号表示:例如 u(t) -u(t-T) 就表示一个宽度为T的矩形脉冲

故有如下等式:
在这里插入图片描述
令∆τ→0,即得:
在这里插入图片描述
得证


由于系统输入单位冲激信号 δ(t) 时响应为 h(t),根据LTI系统的特性有如下对应输入—输出关系

激励e(t)响应r(t)
δ(t)h(t)
δ(t-τ)h(t-τ)
e(τ)∙δ(t-τ)e(τ)∙h(t-τ)
∫ [e(τ)∙δ(t-τ)] dτ∫ [e(τ)∙h(t-τ)] dτ

由于e(t)可表示为如下形式:
在这里插入图片描述
故输出r(t)为:
在这里插入图片描述
也即:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SUPREMESYZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值