对于公式
首先我们需要知道它成立的前提条件是系统为线性时不变(LTI)系统
而对于LTI系统,它满足线性(叠加性、均匀性),时不变特性以及微分特性
1.线性:系统输入E1对应输出R1,输入E2对应输出R2;信号C1E1+C2E2输入系统后得到的输出为C1R1+C2R2
2.时不变特性:系统输入 E(t) 对应输出 R(t),信号 E(t-t0) 输入系统后得到的输出为 R(t-t0)
3.微分特性:系统输入E对应输出R,信号E(n)输入系统后得到的输出为R(n)
对于卷积这种运算,它满足一条性质:任何信号和冲激信号相卷得到的都是该信号本身,即:
也即:
证明:
任意信号 f(t) 都可写成无数个矩形脉冲信号叠加的形式,而矩形脉冲可以用阶跃信号表示:例如 u(t) -u(t-T) 就表示一个宽度为T的矩形脉冲
故有如下等式:
令∆τ→0,即得:
得证。
由于系统输入单位冲激信号 δ(t) 时响应为 h(t),根据LTI系统的特性有如下对应输入—输出关系
激励e(t) | 响应r(t) |
---|---|
δ(t) | h(t) |
δ(t-τ) | h(t-τ) |
e(τ)∙δ(t-τ) | e(τ)∙h(t-τ) |
∫ [e(τ)∙δ(t-τ)] dτ | ∫ [e(τ)∙h(t-τ)] dτ |
由于e(t)可表示为如下形式:
故输出r(t)为:
也即: