点云法向量的估计在很多场景都会用到,比如ICP配准,以及曲面重建。
基于PCA的点云法向量估计,其实是从最小二乘法推导出来的。假设我们要估计某一点的法向量,我们需要通过利用该点的近邻点估计出一个平面,然后我们就能计算出该点的法向量。或者可以这么说,通过最小化一个目标函数(要求的参数为法向量),使得该点与其每个近邻点所构成的向量与法向量的点乘为0,也就是垂直:

正常情况下,我们可以将点c看成是某一领域中所有点的中心点:
m=1n∑i=1nXi m = 1 n ∑ i = 1 n X i </

本文介绍了基于PCA的点云法向量估计原理,通过最小化目标函数找到点的法向量,涉及特征值、特征向量与PCA的关系。优化目标是寻找描述点云共性的平面,法向量为最小特征值对应的特征向量。法向量方向的判断可以通过视点方向或最小生成树方法完成。
最低0.47元/天 解锁文章
1739

被折叠的 条评论
为什么被折叠?



