背景
尽管多变量时间序列(MTS)预测已受到广泛研究,但大多数工作主要聚焦于规则采样且完整观测的 MTS。相比之下,不规则多变量时间序列(IMTS)预测中存在的挑战,即不规则的采样频率及数据缺失问题,却未得到足够重视。实际上,IMTS 在医疗保健、生物力学、气候科学、天文学以及金融等多个科学领域十分常见。准确预测 IMTS 对于支持从决策制定到前瞻性规划等各类关键活动至关重要。
与采样规则的 MTS 不同,由于 IMTS 序列内的不规则性和序列间的异步性,IMTS 的建模与分析更具挑战性。如图 1(a)所示,给定一组历史 IMTS 观测值及预测查询,IMTS 预测问题的核心目标是准确地预测出与这些预测查询相对应的值。
目前,IMTS 的研究主要集中在分类任务上,而对于预测任务的研究相对较少。之前的一些工作如,Latent-ODE [1]、GRU-ODE-Bayes [2] 和 CRU [3] 等依赖于神经常微分方程(Neural ODEs)来处理时间序列的缺失值和不规则采样间隔。然而,这些现有方法往往忽视了局部语义信息或序列间的相关性。
此外,现有方法仍需要对 IMTS 进行预对齐处理,这可能导致序列长度随着变量数量的增加而呈爆炸性增长,如图 1(b)所示。因此,开发一种能够有效处理 IMTS 预测的方法,同时克服上述局限性,是非常必要的。
▲ 图1. (a) 多变量不规则时间序列预测问题,其中 , 与 代表三个不同的变量。(b) 传统的预对齐方法导致每个序列的平均长度从 5 增大到 15,且序列长度会随变量的增多而爆炸式增长。
本文贡献
本研究提出了一种新的可变长的片段化(Transformable Patching)方法,将每个不规则多变量时间序列中的单变量时间序列转换成一系列长度可变但时间分辨率相同的片段。该方法不仅能够有效地捕捉局部语义,还能在避免序列长度爆炸的同时解决序列内的不规则性与序列间的异步性。
基于 Transformable Patching 得到的结果,本研究进一步采用时间自适应图神经网络(Time-Varying Adaptive Graph Neural Network),通过一系列随时间演变学习到的自适应图来动态地建模序列间的相关性。
本研究建立了 IMTS 预测的 benchmark,其包含了四个具有代表性的 IMTS 科学领域数据集,并对 17 个先进的相关领域基线模型进行了公平的比较。
论文标题:
Irregular Multivariate Time Series Forecasting: A Transformable Patching Graph Neural Networks Approach
论文地址:
https://openreview.net/pdf?id=UZlMXUGI6e
代码与数据集地址:
https://github.com/usail-hkust/t-PatchGNN
问题定义