NeurIPS 2024 | 时空数据(Spatial-Temporal)论文总结

  1. [Oral] Get Rid of Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework
  2. [Spoatlight] DiffLight: A Partial Rewards Conditioned Diffusion Model for Traffic Signal Control with Missing Data
  3. Mobility-LLM: Learning Visiting Intentions and Travel Preference from Human Mobility Data with Large Language Models
  4. Addressing Spatial-Temporal Heterogeneity: General Mixed Time Series Analysis via Latent Continuity Recovery and Alignment
  5. Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model
  6. Generating Origin-Destination Matrices in Neural Spatial Interaction Models
  7. Language-Driven Interactive Traffic Trajectory Generation
  8. NetworkGym: Reinforcement Learning Environments for Multi-Access Traffic Management in Network Simulation
  9. Sample-efficient Simulation-based Inference for Urban Travel Demand Calibration
  10. Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation
  11. Learning from Highly Sparse Spatio-temporal Data
  12. UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction

D&B Track

  1. LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation
  2. TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning
  3. FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection
  4. Terra: A Multimodal Spatio-Temporal Dataset Spanning the Earth
  5. UrbanDataLayer: A Unified Data Pipeline for Urban Science
  6. [Oral] ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

1 [Oral] Get Rid of Isolation: A Continuous Multi-task Spatio-Temporal Learning Framework

链接https://nips.cc/virtual/2024/poster/93311

作者:Zhongchao Yi, Zhengyang Zhou, Qihe Huang, Yanjiang Chen, Liheng Yu, Xu Wang, Yang Wang

关键词:多任务,持续学习

2 [Spoatlight] DiffLight: A Partial Rewards Conditioned Diffusion Model for Traffic Signal Control with Missing Data

链接https://nips.cc/virtual/2024/poster/96278

作者:Hanyang Chen, Yang Jiang, Shengnan Guo, Xiaowei Mao, Youfang Lin, Huaiyu Wan

关键词:信控优化,扩散模型

DiffLight

3 Mobility-LLM: Learning Visiting Intentions and Travel Preference from Human Mobility Data with Large Language Models

链接https://neurips.cc/virtual/2024/poster/96914

作者:Letian Gong · Yan Lin · Xinyue Zhang · Yiwen Lu · Xuedi Han · Yichen Liu · Shengnan Guo · Youfang Lin · Huaiyu Wan

关键词:基于位置服务,LLM

Mobility-LLM

2-3的模型图和信息来源于:https://mp.weixin.qq.com/s/OaNsoJt7Zse0ySzcya9whA

4 Addressing Spatial-Temporal Heterogeneity: General Mixed Time Series Analysis via Latent Continuity Recovery and Alignment

链接https://nips.cc/virtual/2024/poster/96039

作者:Jiawei Chen, 春晖 赵

关键词:时空异质性,对齐,恢复

5 Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model

链接https://nips.cc/virtual/2024/poster/96868

作者:Yifan Duan, Jian Zhao, pengcheng, Junyuan Mao, Hao Wu, Jingyu Xu, shilong wang, Caoyuan Ma, Kai Wang, Kun Wang, Xuelong Li

关键词:因果,扩散模型

6 Generating Origin-Destination Matrices in Neural Spatial Interaction Models

链接https://nips.cc/virtual/2024/poster/94266

作者:Ioannis Zachos, Mark Girolami, Theodoros Damoulas

关键词:OD矩阵生成

7 Language-Driven Interactive Traffic Trajectory Generation

链接https://nips.cc/virtual/2024/poster/96845

ARXIV: https://arxiv.org/abs/2405.15388

代码https://github.com/X1a-jk/InteractTraj.git

作者:Junkai XIA, Chenxin Xu, Qingyao Xu, Yanfeng Wang, Siheng Chen

关键词:轨迹生成,语言模型

InteractTraj

8 NetworkGym: Reinforcement Learning Environments for Multi-Access Traffic Management in Network Simulation

链接https://nips.cc/virtual/2024/poster/97863

作者:Momin Haider, Ming Yin, Menglei Zhang, Arpit Gupta, Jing Zhu, Yu-Xiang Wang

关键词:交通模拟,强化学习

9 Sample-efficient Simulation-based Inference for Urban Travel Demand Calibration

链接https://nips.cc/virtual/2024/poster/94187

作者:Sam Griesemer, Defu Cao, Zijun Cui, Carolina Osorio, Yan Liu

关键词:城市交通需求校准推理

10 Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation

链接https://nips.cc/virtual/2024/poster/96855

ARXIV: https://arxiv.org/abs/2402.14744

作者:WANG JIAWEI, Renhe Jiang, Chuang Yang, Zengqing Wu, makoto onizuka, Ryosuke Shibasaki, Noboru Koshizuka, Chuan Xiao

关键词:轨迹生成,LLM

LLMob

11 Learning from Highly Sparse Spatio-temporal Data

链接https://nips.cc/virtual/2024/poster/93436

作者:Leyan Deng, Chenwang Wu, Defu Lian, Enhong Chen

关键词:稀疏性,插补

12 UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction

链接https://nips.cc/virtual/2024/poster/95400

ARXIV: https://arxiv.org/abs/2402.06861

代码https://github.com/usail-hkust/UrbanKGent

作者:Yansong Ning, Hao Liu

关键词:城市知识图谱构建

UrbanKGent

D&B Track

13 LogiCity: Advancing Neuro-Symbolic AI with Abstract Urban Simulation

链接https://nips.cc/virtual/2024/poster/97738

Demohttps://jaraxxus-me.github.io/LogiCity/

作者:Bowen Li, Zhaoyu Li, Qiwei Du, Jinqi Luo, Wenshan Wang, Yaqi Xie, Simon Stepputtis, Chen Wang, Katia Sycara, Pradeep Ravikumar, Alexander Gray, Xujie Si, Sebastian Scherer

关键词:城市模拟,神经符号

14 TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning

链接https://nips.cc/virtual/2024/poster/97807

ARXIV: https://arxiv.org/abs/2406.15658

代码https://github.com/seai-lab/TorchSpatial

作者:Nemin Wu · Qian Cao · Zhangyu Wang · Zeping Liu · Yanlin Qi · Jielu Zhang · Joshua Ni · X. Yao · Hongxu Ma · Lan Mu · Stefano Ermon · Tanuja Ganu · Akshay Nambi · Ni Lao · Gengchen Mai

关键词:空间表示学习

TorchSpatial Overall Framework

15 FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection

链接https://nips.cc/virtual/2024/poster/97562

ARXIV: https://arxiv.org/abs/2406.15283

代码https://acoursey3.github.io/ft-aed/

作者:Austin Coursey · Junyi Ji · Marcos Quinones Grueiro · William Barbour · Yuhang Zhang · Tyler Derr · Gautam Biswas · Daniel Work

关键词:异常检测,数据集

FT-AED

16 Terra: A Multimodal Spatio-Temporal Dataset Spanning the Earth

链接https://nips.cc/virtual/2024/poster/97768

作者:Wei Chen · Xixuan Hao · Yuankai Wu · Yuxuan Liang

关键词:地球气象数据集,多模态

17 UrbanDataLayer: A Unified Data Pipeline for Urban Science

链接https://nips.cc/virtual/2024/poster/97837

作者:Yiheng Wang · Tianyu Wang · YuYing Zhang · Hongji Zhang · Haoyu Zheng · Guanjie Zheng · Linghe Kong

关键词:流水线,城市科学

18 [Oral] ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

链接https://neurips.cc/virtual/2024/oral/98017

ARXIV: https://arxiv.org/abs/2402.00712

Demohttps://leap-stc.github.io/ChaosBench/

作者:Juan Nathaniel · Yongquan Qu · Tung Nguyen · Sungduk Yu · Julius Busecke · Aditya Grover · Pierre Gentine

关键词:气候预测,Benchmark

ChaosBench

19 SolarCube: An Integrative Benchmark Dataset Harnessing Satellite and In-situ Observations for Large-scale Solar Energy Forecasting

链接https://neurips.cc/virtual/2024/poster/97653

代码 https://github.com/Ruohan-Li/SolarCube

作者:Ruohan Li · Yiqun Xie · Xiaowei Jia · Dongdong Wang · Yanhua Li · Yingxue Zhang · Zhihao Wang · Zhili Li

关键词:太阳能预测,benchmark

20 [Spotlight] GeoLife: Spacial Plant Species Prediction Dataset

链接:https://neurips.cc/virtual/2024/poster/97777

arXivhttps://arxiv.org/abs/2308.05121

Kaggle https://www.kaggle.com/competitions/geolifeclef-2023-lifeclef-2023-x-fgvc10/

作者:Lukas Picek · Christophe Botella · Maximilien Servajean · César Leblanc · Rémi Palard · Theo Larcher · Benjamin Deneu · Diego Marcos · Pierre Bonnet · alexis joly

关键词:生态分布预测,物种多样性

GeoLifeCLEF

相关链接

NeurIPS 24 Accepted Papers:https://neurips.cc/virtual/2024/papers.html?filter=titles

### 解决无效代码问题 当遇到 `invalid code error` 时,通常意味着程序中的某些部分未能通过编译器或解释器的验证。此类错误可能由多种原因引起,例如语法错误、拼写错误、不兼容的语言特性或其他逻辑缺陷。 以下是可能导致此问题的原因以及解决方案: #### 原因分析与解决方法 1. **语法错误** 如果代码存在语法错误,则会触发无效代码错误。这可能是由于缺少括号、分号位置不当或者关键字误用引起的[^1]。 ```python # 错误示例:缺少右括号 def example_function(): print("Hello World" ``` 上述代码中未关闭括号,因此无法正常运行。应更正为如下形式: ```python def example_function(): print("Hello World") ``` 2. **变量名冲突或未定义** 当尝试访问尚未声明的变量或将保留字作为变量名称使用时,也可能引发该类错误[^2]。 ```python # 错误示例:试图打印未初始化的变量 print(x) ``` 正确做法是在使用前先定义变量: ```python x = 10 print(x) ``` 3. **模块导入失败** 若项目依赖外部库却未正确安装或引入这些库,同样会产生类似的异常情况[^3]。 ```python import non_existent_module # 尝试调用不存在模块的功能 result = non_existent_module.some_function() ``` 需要确认所需包已成功安装并按照官方文档说明的方式加载它们。 4. **版本差异** 不同版本间可能存在API变更,旧版支持的方法在新版里被废弃也会造成执行失败现象[^4]。 5. **编码格式问题** 文件保存过程中如果选择了错误字符集(比如UTF-8 BOM),有时也会影响解析过程从而报错[^5]。 #### 总结建议 为了有效处理这类问题,开发者应当仔细检查源文件是否存在上述提到的各种潜在隐患;利用IDE内置工具辅助发现隐藏瑕疵;查阅对应框架最新资料了解其改动之处以便及时调整策略适应变化需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值