三角学——极坐标_2

目录

笛卡尔转换极坐标

习题1

习题2


笛卡尔转换极坐标

上一篇文章我们已经掌握了笛卡尔坐标和极坐标的转换所有公式了。

这就是表示点的两种方法。

笛卡尔坐标中,为了达到某一点,横坐标表征左右移动的距离。

极坐标中,为了达到某一点,角度表征移动的方向。(r 可以看作是半径,表示在这个方向上移动的距离)

所以只是表示某一点的两种方法,之后我们会看到一些函数用极坐标表示更为简便,而另一些函数更适合笛卡尔坐标。

现在我们做几个小题: 

给定极坐标:(4,150°)将其转换为笛卡尔坐标(x,y)。

我首先要做的直观看一下坐标是如何的:

好了,我们现在要利用我们之前推导的公式:

x = rcos\theta

y = rsin\theta

将(4,150°)代入这个公式得:

(4cos150^{\circ}, 4sin150^{\circ})

是时候拿出计算器了计算一下角度,计算器确定是角度模式而不是弧度。计算得出结果:

(-3.46,2)

结果跟我们预想是一样的,横坐标是负的,纵坐标是正的。我画出来看看:

你也可以用勾股定理来证明极半径是等于4。

我们现在完成了极坐标到笛卡尔坐标的转换。非常不错。哈!~

现在要更进一步来学习函数表达式在极坐标和笛卡尔坐标之间相互转换。

习题1

我们继续来做习题:

要求将 x^{2} + y^{2} = 4 转换为极坐标形式。

首先我们要做的直观想象一下这个图是什么样子的。

是个圆的。所以用极坐标表示的话会比较合适。

我们推导的公式呢?如下:

 x^{2} + y^{2} = r^{2}

tan\theta=\frac{y}{x}

y = rsin\theta

x = rcos\theta

这些公式通常要记下来,不要死记硬背,重新推导一遍,你就记住了。

接下来就要将其转换为极坐标。

已知:x^{2} + y^{2} = 4,由于 x^{2} + y^{2} = 2^{2} , 所以r^{2}=2,也就是 r = \pm 2

现在我们用图形表示一下:、

这个函数无须考虑角度。表示半径为常数与角度无关。在圆里面无论什么方向半径都是相等的。

圆在极坐标表示下,更为简单。

第二题:

要求(x^{2}+y^{2})=9(\frac{y}{x})^2转换为极坐标形式。

已知 x^{2} + y^{2} = r^{2} 和 tan\theta=\frac{y}{x}, 得到:

r^2 = 9(tan\theta)^2

同时取平方根得到:

r = \pm 3tan\theta

正负是无关要紧的,这在极坐标中很常见。

那么半径为负的意义,请看图:

你可以看正的半径和负的半径的方向是相反的。不论半径是正的还是负的,所以归根到底是一样的,等式所对应的图形相同。

可以写为:

r = 3tan\theta

好了,这两题应该多点然给你了解极坐标。

习题2

我们继续练习将函数由笛卡尔坐标转换为极坐标表示。

这一题是:

3y-7x=10,转换为关于 r 和 \theta 的函数。

我们的公式贴在这里:

 x^{2} + y^{2} = r^{2}

tan\theta=\frac{y}{x}

y = rsin\theta

x = rcos\theta

转换为关于 r 和 \theta 的函数。最简单的方法是替换 x 和 y 。

我们知道 y = rsin\theta 、 x = rcos\theta  做替换,那么3y,而 y = rsin\theta ,我们得到:

3rsin\theta - 7rcos\theta=10

记住这些公式都是由三角函数推导的。看一下上面的公式能否简化,将r提取出来,我们得到:

r(3rsin\theta-7rcos\theta) = 10

等号两边同时除以(3rsin\theta-7rcos\theta)得到:

r = \frac{10}{3sin\theta-7cos\theta}

也可以写成 r 是 \theta的函数,这样写是为了说明函数符号表达式,在极坐标下同样使用。

我们要养成一个习惯,就是做题的时候,把公式贴下来:

 x^{2} + y^{2} = r^{2}

tan\theta=\frac{y}{x}

y = rsin\theta

x = rcos\theta

这题是:y = 2x - 3

同样的处理的方法:y 和 x 是 r 和 \theta的函数。

已知y = rsin\theta ,x = rcos\theta,替换一下x,y。我们得到:

rsin\theta = 2rcos\theta - 3

看一下能否将 r 和 \theta分开,两边同时减去2rcos\theta,得到:

rsin\theta - 2rcos\theta = -3

和上题一样,将 r 提出来,得到:

r(sin\theta-2cos\theta)=-3

等号两边同时除以(sin\theta-2cos\theta),得到:

r = -\frac{3}{sin\theta - 2cos\theta}

这样就完成了。

我们继续做一下别的题目。

我们把公式贴下来:

 x^{2} + y^{2} = r^{2}

tan\theta=\frac{y}{x}

y = rsin\theta

x = rcos\theta

这次是要求极坐标转换为笛卡尔坐标。以下给出了极坐标下的函数:

r=4sin\theta,如何转换为了x 和 y的函数呢?

首先,我们先把 y = rsin\theta 进行变形,两边同时除以 r得到:

\frac{y}{r}=sin\theta

现在可以做一个替换,我们得到:

r=\frac{4y}{r}

两边同时乘以 r 得到:

r^2 = 4y

根据公式 x^{2} + y^{2} = r^{2} 得到:

x^2 + y^2 = 4y

完成了,我们至少得到了隐函数式而不是显函数式。但已经足够好了。

你们看到了,其实就是一些代数处理和一些三角学知识。数学很重要。

我们继续做题:

还是先把公式复制下来。

 x^{2} + y^{2} = r^{2}

tan\theta=\frac{y}{x}

y = rsin\theta

x = rcos\theta

问题:极坐标下r = sin\theta + cos\theta

其实这些函数我们可以画图,可以将图形计算器设置在极坐标模式,在之后的文章会画出一些图形。

现在,如何用 x 和 y 表示这一关系式呢?

我们继续利用 y = rsin\theta , x = rcos\theta ,转换一下这些公式:

sin\theta = \frac{y}{r}

cos\theta= \frac{x}{r}

现在可以代入r = sin\theta + cos\theta,得到:

r = \frac{y}{r}+\frac{x}{r}

现在等号两边同时乘以 r 得到:

r^2 = x + y

根据公式x^{2} + y^{2} = r^{2},我们得到:

x^2 + y^2 = x + y

这就完成了。

我继续下一题,这次我们不看公式:

题目:r = a^2

有些抽象,但是a是常数,我们直观感觉应该是圆形。

如何用笛卡尔坐标表示呢?

我们先把r = a^2取平方得到:

r^2 = a^4

我们已知x^2 + y^2 = r^2,所以我们得到:

x^2 + y^2 = a^4

我们已经比较充分学完笛卡尔和极坐标的转换。下面会继续学习极坐标的图形,

以便你们能够直观了解 r 和 \theta之间的关系的直观认识。


——请不断重复练习、练习、练习、再练习。。。 

### 极坐标下的傅里叶变换原理 极坐标形式的二维傅里叶变换提供了一种有效的工具来分析具有径向对称性的函数。其基本思想是通过将直角坐标系中的积分转换为极坐标系中的积分,从而简化计算过程。 #### 正变换公式 在极坐标下,二维傅里叶变换可以表示为: ```math G(f, \phi) = \iint g(r, \theta) e^{-j2\pi fr\cos(\phi - \theta)} r dr d\theta ``` 其中 \(g(r, \theta)\) 表示原函数在极坐标下的表达形式,\(r\) \(\theta\) 分别代表半径角度变量;\(f\) \(\phi\) 则分别对应于频率域中的模方向[^3]。 此公式的推导基于从笛卡尔坐标到极坐标的转换关系以及指数项的角度依赖性质。具体来说,它利用了三角恒等式 \(u x + v y = f r \cos(\phi - \theta)\),这里 \(f=\sqrt{u^2+v^2}\), \(\tan{\phi}=v/u\)。 #### 逆变换公式 相应的逆变换用于恢复原始的空间分布,定义如下: ```math g(r, \theta) = \iint G(f, \phi) e^{j2\pi fr\cos(\phi - \theta)} f df d\phi ``` 注意,在该方程中出现了额外因子 \(f\) 来补偿正交基底之间的尺度差异。 上述两组公式构成了完整的极坐标傅里叶变换理论框架,并广泛应用于医学成像(MRI重建)、天文学图像处理等领域之中。 ### 实现方法概述 实际应用过程中,离散化版本更为常见。对于给定采样网格上的输入数据矩阵 `I[m,n]` ,可以通过数值积分技术近似求解连续型FT表达式: 1. **预处理阶段**: 将输入数组映射至适合操作的新结构——例如采用双线性插值法完成从Cartesian grid到Polar grid的数据重排; 2. **核心运算环节**: 应用快速傅里叶变换(FFT)算法加速执行沿特定维度的一维DFTs序列组合而成的整体流程; 3. **后置调整步骤**: 考虑可能存在的几何畸变效应修正最终输出结果形状匹配需求。 以下是Python语言实现的一个简单例子片段展示如何构建这样的功能模块: ```python import numpy as np from scipy.fftpack import fftshift, ifftshift, fftn, ifftn def cart2pol(x, y): rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi) def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return(x, y) def polar_fft(image, num_radial_points=512, num_angular_points=512): M, N = image.shape R = max(M,N)/2 # Create Cartesian coordinate grids. X,Y=np.mgrid[-M//2:M//2,-N//2:N//2] # Convert to Polar coordinates. radius, angle = cart2pol(X,R*Y/M) # Resample into a uniform polar grid using interpolation. from scipy.interpolate import RegularGridInterpolator points=(radius.flatten(),angle.flatten()) values=image.ravel() xi=np.linspace(0,R,num_radial_points) yi=np.linspace(-np.pi,np.pi,num_angular_points,True) interpolating_function = RegularGridInterpolator((xi,yi), values.reshape(len(xi),len(yi))) new_radius,new_angle=np.meshgrid(np.linspace(0,R,num_radial_points), np.linspace(-np.pi,np.pi,num_angular_points)) resampled_image=interpolating_function((new_radius.flat, new_angle.flat)).reshape(new_radius.shape) # Perform FFT on the resampled data. ft_resampled_data = fftshift(fftn(ifftshift(resampled_image))) return ft_resampled_data # Example usage: if __name__ == "__main__": img = np.random.rand(256, 256) result = polar_fft(img) print(result.shape) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值