[天籁之音]《斯卡布罗集市(Scarborough Fair)》

 

 这是一个小村庄,在欧洲,或是在美洲。其实在哪儿并不重要,重要的是,有这样一个小村庄,它的名字叫斯卡布罗集市,很美丽很祥和,到处长满芫荽、鼠尾草、迷迭香和百里香,四季有风在和煦地吹。

  一个男青年,和一个可爱的姑娘热恋了,在这个到处有草的清香花的清香的小村庄。他们一起步入绿林深处听风吟唱,他们一起看白雪封顶的褐色山上雀儿在追逐嬉闹,他们说着天长和地久,甜蜜的爱情犹如花儿盛放。

  一定有过美丽的憧憬,憧憬一个家,两个人。尔后,有稚子绕膝的欢乐,有坐着摇椅慢慢聊的宁静和安详,那是凡尘中最为普通的幸福和快乐啊。可是,一场战争爆发了,男青年告别了心爱的姑娘上了战场,从此一别,便是生死两茫茫。

  别时,他答应过她,一定会回来的。而她也含泪答应他,一定会等着他的。然而无情的炮火吞没了男青年,他再不能回到他朝思暮想的家乡斯卡布罗集市了,再不能与心爱的姑娘一起享受生活的甜蜜了。他不甘啊,他要信守承诺啊,于是躯体去了,灵魂却不肯消失,一遍一遍向路过的行人反复低吟浅唱:

  您去过斯卡布罗集市吗芫荽、鼠尾草、迷迭香和百里香代我向那儿的一个姑娘问好她曾经是我的爱人。

  ……

  这是一首地道的英文歌,第一次听这首歌的时候,还不能明了歌中唱的是什么,但听着听着,就想流泪。我完全被那美妙悱恻的旋律震住了,更兼莎拉布莱曼那天使般嗓音的演绎,使得这首名叫《斯卡布罗集市》的歌,像月下山泉,潺潺而下。又如一袭夜风吹过,山花一朵一朵静静地开了。美丽忧伤得似深潭里的月影啊,沉进去,再也打捞不上来了。

  它是美国上世纪60年代最受大学生欢迎的电影《毕业生》的插曲。我在电脑里一遍一遍听它,黄昏的屋子里,就泊满了透明的忧伤。我浸泡在莎拉天籁一般的歌声里,不能自已。我的思绪飞到我目力不及的远方,那里就是美丽的斯卡布罗集市啊,蔚蓝的天空下,芫荽、鼠尾草、迷迭香和百里香一定还在的,山风还像往常一样吹着,调皮的雀儿,一定还在山岗上欢快地跳着唱着,可是美丽的姑娘却等不回心上人了。山花竞相开放,一朵一朵浅淡的芳华在风中摇曳,有谁看见凋零的叹息,遗失在《斯卡布罗集市》里了?

  在网上,我还找到诗经版的《斯卡布罗集市》:

  问尔所之,是否如适。蕙兰芫荽,郁郁香芷。彼方淑女,凭君寄辞。伊人曾在,与我相知。……

  反复吟哦,更是别有一番感伤在心头。莎拉还在我的电脑里低郁地唱着“Are you going to Scarborough Fair(你去过斯卡布罗集市吗)”,而我,只想轻轻问问所有的人,你有你的斯卡布罗集市吗?如果有,它,还好吗?

歌词

您去过斯卡布罗集市吗

芜荽、鼠尾草、迷迭香和百里香

代我向那儿的一位姑娘问好

她曾经是我的爱人

叫她替我做件麻布衣衫

绿林深处山岗旁

芜荽、鼠尾草、迷迭香和百里香

在白雪封顶的褐色山上追逐雀儿

上面不用缝口,也不用针线

大山是山之子的地毯和床单

她就会是我真正的爱人

熟睡中不觉号角声声呼唤

叫她替我找一块地

从小山旁几片小草叶上

芜荽、鼠尾草、迷迭香和百里香

滴下的银色泪珠冲刷着坟茔

就在咸水和大海之间

士兵擦拭着他的枪

她就会是我真正的爱人

叫她用一把皮镰收割

战火轰隆,猩红的枪弹在狂呼

芜荽、鼠尾草、迷迭香和百里香

将军们命令麾下的士兵杀戮

将收割的石楠扎成一束

为一个早已遗忘的理由而战

她就会是我真正的爱人

### 关于电影推荐系统数据分析与可视化 #### 数据分析的重要性 对Netflix的电影和电视节目数据集进行可视化分析,可以深入了解平台上的内容分布、受众偏好和发展趋势。这种分析不仅有助于理解现有模式,还能为未来的内容创作、推荐系统优化以及市场营销策略提供重要参考和支持[^1]。 #### 推荐系统的实现方法 构建有效的电影推荐系统通常涉及以下几个方面: - **协同过滤算法**:基于用户行为的历史记录来预测用户的兴趣爱好并做出个性化推荐。这种方法分为两类——基于用户的协同过滤(User-based Collaborative Filtering)和基于物品的协同过滤(Item-based Collaborative Filtering)[^1]。 - **矩阵分解技术**:如奇异值分解(SVD),用于降低维度的同时保留主要特征向量的信息,从而提高模型性能和效率。 - **深度学习框架的应用**:利用神经网络结构处理复杂的非线性关系,在大规模稀疏数据集中表现尤为出色。例如AutoEncoder可用于自动编码器重构输入以捕捉潜在因素;而RNN及其变体LSTM则擅长序列建模任务,适用于时间敏感型推荐场景。 ```python import numpy as np from sklearn.decomposition import TruncatedSVD def svd_recommendation(user_item_matrix, n_components=50): """ 使用截断SVD进行降维后的简单推荐 参数: user_item_matrix (numpy.ndarray): 用户-项目评分矩阵 n_components (int): SVD组件数量 返回: recommendations (list of tuples): 形式为(项目ID, 预测评分) 的列表 """ model = TruncatedSVD(n_components=n_components) reduced_matrix = model.fit_transform(user_item_matrix) # 假设这里有一个函数get_user_profile获取当前用户的profile user_vector = get_user_profile() predictions = np.dot(reduced_matrix.T, user_vector).flatten() top_n_indices = (-predictions).argsort()[:n] return [(idx, pred) for idx, pred in zip(top_n_indices, predictions[top_n_indices])] ``` #### 可视化工具的选择 为了更好地展示上述过程中的发现,可以选择多种流行的Python库来进行数据可视化工作: - **Matplotlib 和 Seaborn**: 这两个库非常适合创建静态图表,比如条形图、折线图等基础图形; - **Plotly Express 或 Bokeh**: 支持交互式的Web端绘图,允许读者动态探索多维空间内的关联规律; - **Altair**: 提供简洁优雅的数据声明语法,适合快速原型开发阶段使用。 #### 案例研究 以Netflix为例,通过对平台上大量影视作品的相关元数据(导演、演员阵容、流派分类)、播放统计数据(观看次数、暂停位置)以及其他外部资源(社交媒体热度指数)进行全面挖掘整理后,再借助先进的机器学习手段建立精准度更高的个性化推荐引擎。最终成果不仅能显著改善用户体验满意度,同时也为企业带来了可观经济效益增长点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值