PclSharp--贪婪投影三角算法

本文详细介绍了PCL库中的点云三角化技术,包括Delaunay三角剖分的概念及其在最小角最大化原则下的应用,以及通过贪婪三角化方法,如何将三维点云投影并重构为二维平面模型。通过C#代码实例展示了从法线估计、拼接到最终三角网格的全过程。

1、PCL点云三角化
1.1 Delaunay三角剖分
定义:假设点集中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(圆上最多三点共圆)不含点集中任何其他的点。而Delaunay三角化就是指三角网格均是由Delaunay边组成,并满足最小角最大原则(在点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大)。

1.2 贪婪三角化
PCL中采用将三维点云投影到二维平面的方法来实现三角剖分, 具体采用贪婪三角化算法。
其过程为:
1:计算点云中点的法线,再将点云通过法线投影到二维坐标平面。
2:使用基于Delaunay三角剖分的空间区域增长算法完成平面点集的三角化。
3:根据投影点云的连接关系确定原始三维点云间的拓扑关系,最终得到曲面模型。

2、代码:

using PclSharp;
using PclSharp.Features;
using PclSharp.Helpers;
using PclSharp.IO;
using PclSharp.Search;
using PclSharp.Struct;
using PclSharp.Surface;
using System;


namespace PclSharpTest
{
    class Program
    {
        static void Main(string[] args)
        {
&nbs

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西~风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值