1、PCL点云三角化
1.1 Delaunay三角剖分
定义:假设点集中的一条边e(两个端点为a,b),e若满足下列条件,则称之为Delaunay边:存在一个圆经过a,b两点,圆内(圆上最多三点共圆)不含点集中任何其他的点。而Delaunay三角化就是指三角网格均是由Delaunay边组成,并满足最小角最大原则(在点集可能形成的三角剖分中,Delaunay三角剖分所形成的三角形的最小角最大)。
1.2 贪婪三角化
PCL中采用将三维点云投影到二维平面的方法来实现三角剖分, 具体采用贪婪三角化算法。
其过程为:
1:计算点云中点的法线,再将点云通过法线投影到二维坐标平面。
2:使用基于Delaunay三角剖分的空间区域增长算法完成平面点集的三角化。
3:根据投影点云的连接关系确定原始三维点云间的拓扑关系,最终得到曲面模型。

2、代码:
using PclSharp;
using PclSharp.Features;
using PclSharp.Helpers;
using PclSharp.IO;
using PclSharp.Search;
using PclSharp.Struct;
using PclSharp.Surface;
using System;
namespace PclSharpTest
{
class Program
{
static void Main(string[] args)
{
&nbs

本文详细介绍了PCL库中的点云三角化技术,包括Delaunay三角剖分的概念及其在最小角最大化原则下的应用,以及通过贪婪三角化方法,如何将三维点云投影并重构为二维平面模型。通过C#代码实例展示了从法线估计、拼接到最终三角网格的全过程。
最低0.47元/天 解锁文章
1357

被折叠的 条评论
为什么被折叠?



