POJ - 3160 Father Christmas flymouse DAG最长路

又来做这一道缩点的裸题,发现图转化为DAG后明显是一个最长路,那么有没有固定都求法呢,查询资料后发现的确是一种固定的做法。

DAG最长路,分为两种固定终点和不固定终点。

令dp[i]表示从i顶点出发能获得的最长路径长度,这样所有的d[i]的最大值就是整个DAG的最长路径长度。

注意到dp[i]表示从i顶点出发能获得的最长路径长度,如果从i号顶点出发能直接到达顶点j1,j2..jk,而dp[j1]..dp[jk]均已知。那么就有

                            dp[i]=max{dp[j]+length[i->j](i,j)∈E} 

显然,根据上面的思路需要按照逆拓扑排序来求解dp数组(因为最后的顶点没有出边),但有木有办法不求逆拓扑排序也能计算dp数组呢?当然有,那就是递归。其基于邻接矩阵实现的代码如下:

1.不固定终点,初始值设为0,就如同该题,此时权值是以点的形式。

memset(dp,0,sizeof(dp));
int DP(int u)
{
    if(dp[u]!=-1)
        return dp[u];
    dp[u]=sum[u];
    for(int i=0;i<v[u].size();i++)
    {
        int e=v[u][i];
        dp[u]=max(dp[u],DP[e]+sum[u]);
    }
    return dp[u];
}

2:固定终点,求DAG的最长路径,有了上面的经验,应当能很容易想到这个问题延伸问题的解决方案。假设规定的终点为T。那么可以令dp[i]表示从i号顶点出发到达终点T能获得的最长路径长度。,如果从i号顶点出发能直接到达顶点j1,j2..jk,而dp[j1]..dp[jk]均已知,那么就有dp[i]=max{dp[j]+length[i->j](i,j)∈E} 。可以发现怎么和问题(1)的式子是一样的。如果仅仅是这样就无法体现出dp数组的含义中添加的“到达终点T的描述”。

那么这两个问题的区别在哪呢?没错,边界。在第一个问题中没有固定的终点,因此所有出度为0的顶点dp值为0是边界;但在这个问题中固定了终点,因此边界应当为dp[T]=0。那么还能像之前那样对整个dp数组初始化为0?不行,此处会有个问题,由于从某顶点出发可能无法到达终点T(例如出度为0的顶点),因此按照之前的做法出度为0的顶点到T的最长路径长度为0,这显然是不符合逻辑的。合适的做法是初始化dp数组为一个负的大数,来保证“”无法到达终点”的含义得以表达(即-Inf,消除其他出度为0的顶点对前驱结点的最长距离的干扰); 代码如下:此时权值是以边的形式。

int DP(int u)
{
    if(dp[u]!=-inff) return dp[u];
    for(int i=0;i<v[u].size();i++)
    {
        int e=v[u][i];
        dp[u]=max(dp[u],DP[e]+len[u][e]);
    }
    return dp[u];
}

AC代码:

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<stack>
#include<vector>
#include<map>
#include<queue>
#define myself i,l,r
#define lson i<<1
#define rson i<<1|1
#define Lson i<<1,l,mid
#define Rson i<<1|1,mid+1,r
#define half (l+r)/2
#define inff 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define PI 3.14159265358979323846
#define me(a,b) memset(a,b,sizeof(a))
#define min4(a,b,c,d) min(min(a,b),min(c,d))
#define min3(x,y,z) min(min(x,y),min(y,z))
const int dir[4][2]= {0,-1,-1,0,0,1,1,0};
typedef long long ll;
const ll inFF=9223372036854775807;
typedef unsigned long long ull;
using namespace std;
const int maxn=3e4+5;
const int maxm=150005;
int Stack[maxn],inStack[maxn],low[maxn],head[maxn],dfn[maxn],val[maxn],belong[maxn],sum[maxn],dp[maxn];
int sign,cnt,top,t,m,n;
vector<int>v[maxn];
struct node
{
    int to,p;
}edge[maxm];
void init()
{
    sign=cnt=t=top=0;
    for(int i=0;i<=n;i++)
    {
        v[i].clear();
        inStack[i]=sum[i]=dfn[i]=low[i]=0;
        head[i]=dp[i]=-1;
    }
}
int DP(int u)
{
    if(dp[u]!=-1)
        return dp[u];
    dp[u]=sum[u];
    for(int i=0;i<v[u].size();i++)
    {
        int e=v[u][i];
        dp[u]=max(dp[u],dp[e]+dp[u]);
    }
    return dp[u];
}
void add(int u,int v)
{
    edge[sign]=node{v,head[u]};
    head[u]=sign++;
}
void tanjar(int u)
{
    low[u]=dfn[u]=++t;
    Stack[++top]=u;
    inStack[u]=1;
    for(int i=head[u];i!=-1;i=edge[i].p)
    {
        int e=edge[i].to;
        if(!dfn[e]) tanjar(e),low[u]=min(low[u],low[e]);
        else if(inStack[e]) low[u]=min(low[u],dfn[e]);
    }
    int x;
    if(low[u]==dfn[u])
    {
        cnt++;
        do
        {
            x=Stack[top--];
            inStack[x]=0;
            sum[cnt]+=val[x];
            belong[x]=cnt;
        }while(u!=x);
    }
}
int main()
{
    int x,y;
    while(cin>>n>>m)
    {
        init();
        for(int i=0;i<n;i++) scanf("%d",&val[i]),val[i]=(val[i]>=0)?val[i]:0;
        for(int i=0;i<m;i++) scanf("%d %d",&x,&y),add(x,y);
        for(int i=0;i<n;i++) if(!dfn[i]) tanjar(i);
        for(int i=0;i<n;i++)
        {
            for(int j=head[i];~j;j=edge[j].p)
            {
                int e=edge[j].to;
                if(belong[i]!=belong[e])
                    v[belong[i]].push_back(belong[e]);
            }
        }
        int ans=0;
        for(int i=1;i<=cnt;i++) ans=max(ans,DP(i));
        cout<<ans<<endl;
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值