Stata使用esttab保存回归结果的一些tips

Stata中 esttab的一些使用tips

安装

ssc install estout

使用

  1. 使用前提:保存回归结果
reg y x1 x2, vce(r)
est store m1
  1. 基本使用方法,默认输出t-value和系数,(3)指3位小数,也可设置为输出其他参数,例如下述命令可输出standard error。其他参数可参考文后链接
esttab m1, se t(3)
  1. 更改显著系数设置
esttab m2, star(* 0.1 ** 0.05 *** 0.01)
  1. 输出到word文档,可输出rtf/doc格式等。推荐rtf,word可打开,输出格式稳定,filename不需加引号,不需提前建立,stata会在原工作文件夹新建文件
esttab m2  using [filename],  star(* 0.1 ** 0.05 *** 0.01)
  1. 输出隐藏参数,有时stata不会显示AIC/BIC, esttab可输出,具体命令可参考文后链接
esttab m2 m3 m4 m5 using [filename], pr2 aic bic
  1. 修改变量名显示宽度
esttab m2 m3 m4 m5 using [filename], varwidth(35)
  1. 修改列名
esttab m2 m3 m4 m5 using [filename], mtitle(modelA modelB modelC modelD)

以上操作可同时在一次命令中实现

esttab m1 m2 m3 using [filename.filetype], se t(3) star(* 0.1 ** 0.05 *** 0.01) pr2 aic bic varwidth(35) mtitle(modelA modelB modelC modelD)

其他高阶使用方法,可参考链接

<think>好的,用户询问的是如何在Stata使用esttab命令生成回归表格或导出统计结果。首先,我需要回忆一下esttab的基本功能和常见用法。根据提供的引用资料,用户可能希望了解如何自定义输出的统计量,比如替换点估计和标准误,以及如何导出结果到不同格式如Excel或Word。 首先,我应该从基础用法开始。比如,用户可能需要进行简单的回归使用esttab输出结果。根据引用[3],esttab是推荐的工具之一,所以需要展示一个基本的回归示例,保存估计结果并用esttab生成表格。这里要提到保存模型估计结果使用estimates store,然后使用esttab导出,如引用[2]提到的。 接下来是自定义统计量部分。引用[1]指出,main()和aux()选项可以替换点估计和t值/标准误。需要举一个例子,比如在main中显示系数,aux中显示p值,这样用户能理解如何调整输出内容。 然后是关于导出格式的需求。用户可能需要将结果保存为Excel、LaTeX或Word。引用[3]提到了reg2docx,但这里主要讲esttab,所以应该展示使用选项如csv、tex等来指定输出格式。例如,使用using配合文件扩展名,以及replace选项覆盖旧文件。 另外,引用[4]中的示例展示了生成概率转移矩阵,虽然用户的问题是关于回归表格,但可能也需要提到esttab的其他应用,比如表格的排版和标签设置。比如调整列名、添加标题,或者处理行标签,这些细节能帮助用户更好地格式化输出结果。 此外,引用[5]提到了因子变量在回归中的应用,虽然不直接相关,但可能在示例中加入虚拟变量,展示esttab如何处理这些变量,比如显示基准组或不同类别的系数。 还需要注意用户可能遇到的常见问题,比如如何控制小数位数,如何添加统计量如R平方和观测数。这些在示例中通过scalars选项来实现,比如r2和N。同时,可能需要提到如何调整格式,如fmt()来设置小数位数。 最后,确保回答结构清晰,分点说明,并附上示例代码,让用户能逐步跟随操作。同时,生成的相关问题需要覆盖进阶用法、常见问题处理以及与其他命令的比较,帮助用户进一步探索。</think>### Stata esttab 命令使用方法详解 esttabStata 中用于生成回归结果表格的第三方命令(需安装`estout`包),支持灵活定制输出内容与格式。以下是核心用法及示例: --- #### 一、基础用法 1. **保存回归结果** 先运行回归模型并使用`estimates store`保存结果: ```stata sysuse auto, clear reg price mpg weight estimates store Model1 // 保存为Model1 reg price mpg weight foreign estimates store Model2 // 保存为Model2 ``` 2. **生成基础表格** 使用`esttab`输出多个模型的对比表格: ```stata esttab Model1 Model2, se stats(r2 N) ``` - `se`:显示标准误(默认显示系数和t值,可用`p`显示p值) - `stats(r2 N)`:添加R²和样本量统计行[^2] --- #### 二、自定义统计量 1. **替换点估计与统计值** 通过`main()`和`aux()`选项分别控制主列(如系数)和辅助列(如标准误): ```stata esttab Model1 Model2, main(mean) aux(sd) // 主列显示均值,辅助列显示标准差[^1] ``` 2. **添加自定义统计量** 使用`scalars()`添加似然值、F统计量等: ```stata esttab Model1 Model2, scalars(ll_0 ll) // 显示零模型对数似然值和当前模型对数似然值 ``` --- #### 三、格式控制与导出 1. **设置小数位数** 用`b()`和`se()`指定系数和标准误的小数位数,`fmt()`全局控制: ```stata esttab Model1 Model2, b(3) se(2) fmt(4) // 系数3位小数,标准误2位,其他统计量4位 ``` 2. **导出到文件** 使用`using`保存为CSV、TeX或Word格式: ```stata esttab Model1 Model2 using "result.csv", replace // 导出为CSV esttab Model1 Model2 using "result.rtf", replace // 导出为Word[^3] ``` --- #### 四、进阶示例 **生成带有虚拟变量的表格** 当模型包含因子变量时,esttab 会自动处理虚拟变量标签: ```stata webuse nlswork, clear xtreg ln_wage i.race age, re esttab, label // 显示因子变量标签(如race类别)[^5] ``` **输出效果** ``` ----------------------------- ln_wage ----------------------- black -1.238*** (0.123) other 0.468 (0.456) age 0.032** (0.010) ----------------------- R² 0.752 N 1000 ----------------------------- ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值