矩阵算术
矩阵算术是线性代数中的基本操作,它包括矩阵的加法、减法、标量乘法、矩阵乘法、转置以及逆矩阵等运算。掌握这些运算对于理解矩阵的性质和应用非常重要。以下是关于矩阵算术的详细讲解:
1. 矩阵的加法与减法
-
定义:矩阵的加法和减法是逐元素进行的。这意味着,只有大小相同的矩阵(即行数和列数相同的矩阵)才能相加或相减。
-
运算规则:
C = A + B 其中 C i j = A i j + B i j C = A + B \quad \text{其中} \quad C_{ij} = A_{ij} + B_{ij} C=A+B其中Cij=Aij+Bij
D = A − B 其中 D i j = A i j − B i j D = A - B \quad \text{其中} \quad D_{ij} = A_{ij} - B_{ij} D=A−B其中Dij=Aij−Bij
其中, A A A 和 B B B 是相同大小的矩阵, C C C 和 D D D 是加法和减法的结果矩阵。 -
示例:
A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} A=(1324),B=(5768)
A + B = ( 1 + 5 2 + 6 3 + 7 4 + 8 ) = ( 6 8 10 12 ) A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} A+B=(1+53+72+64+8)=(610812)
A − B = ( 1 − 5 2 − 6 3 − 7 4 − 8 ) = ( − 4 − 4 − 4 − 4 ) A - B = \begin{pmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix} A−B=(1−53−72−64−8)=(−4−4−4−4)
2. 矩阵的标量乘法
-
定义:标量乘法是将矩阵中的每一个元素与一个标量相乘。这个标量可以是一个实数、复数等。
-
运算规则:
B = c ⋅ A 其中 B i j = c ⋅ A i j B = c \cdot A \quad \text{其中} \quad B_{ij} = c \cdot A_{ij} B=c⋅A其中Bij=c⋅Aij
其中, c c c 是一个标量, A A A 是一个矩阵, B B B 是乘法结果矩阵。 -
示例:
A = ( 1 2 3 4 ) , c = 2 A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad c = 2 A=(1324),c=2
c ⋅ A = 2 ⋅ ( 1 2 3 4 ) = ( 2 4 6 8 ) c \cdot A = 2 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} c⋅A=2⋅(1324)=(2648)
3. 矩阵乘法
-
定义:矩阵乘法不是逐元素进行的,而是通过行和列的点积来完成。两个矩阵相乘的前提条件是,第一个矩阵的列数必须等于第二个矩阵的行数。
-
运算规则:
C = A ⋅ B 其中 C i j = ∑ k = 1 n A i k ⋅ B k j C = A \cdot B \quad \text{其中} \quad C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} C=A⋅B其中Cij=k=1∑nAik⋅Bkj
其中, A A A 是一个 m × n m \times n m×n 矩阵, B B B 是一个 n × p n \times p n×p 矩阵,结果 C C C 是一个 m × p m \times p m×p 矩阵。 -
示例:
A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} A=(1324),B=(5768)
A ⋅ B = ( 1 × 5 + 2 × 7 1 × 6 + 2 × 8 3 × 5 + 4 × 7 3 × 6 + 4 × 8 ) = ( 19 22 43 50 ) A \cdot B = \begin{pmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix} A⋅B=(1×5+2×73×5+4×71×6+2×83×6+4×8)=(19432250)
4. 矩阵的转置
-
定义:矩阵的转置是将矩阵的行与列互换,得到一个新矩阵。
-
运算规则:
B = A T 其中 B i j = A j i B = A^T \quad \text{其中} \quad B_{ij} = A_{ji} B=AT其中Bij=Aji
其中, A A A 是一个 m × n m \times n m×n 矩阵,转置后的 B B B 是一个 n × m n \times m n×m 矩阵。 -
示例:
A = ( 1 2 3 4 5 6 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} A=(142536)
A T = ( 1 4 2 5 3 6 ) A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} AT= 123456
5. 矩阵的逆
-
定义:一个方阵(行数等于列数)的逆矩阵是一个矩阵,满足原矩阵与其逆矩阵相乘结果为单位矩阵。
-
运算规则:
A ⋅ A − 1 = I A \cdot A^{-1} = I A⋅A−1=I
其中, A A A 是一个 n × n n \times n n×n 的可逆方阵, A − 1 A^{-1} A−1 是它的逆矩阵, I I I 是 n × n n \times n n×n 的单位矩阵。 -
逆矩阵的计算:对于一个 2 × 2 2 \times 2 2×2 矩阵 A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd),其逆矩阵 A − 1 A^{-1} A−1 为:
A − 1 = 1 a d − b c ( d − b − c a ) A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} A−1=ad−bc1(d−c−ba)
前提是 a d − b c ≠ 0 ad - bc \neq 0 ad−bc=0(即行列式不为零)。 -
示例:
A = ( 1 2 3 4 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} A=(1324)
A − 1 = 1 1 × 4 − 2 × 3 ( 4 − 2 − 3 1 ) = 1 − 2 ( 4 − 2 − 3 1 ) = ( − 2 1 1.5 − 0.5 ) A^{-1} = \frac{1}{1 \times 4 - 2 \times 3} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1.5 & -0.5 \end{pmatrix} A−1=1×4−2×31(4−3−21)=−21(4−3−21)=(−21.51−0.5)
6. 矩阵的行列式
-
定义:行列式是方阵的一个标量值,反映了矩阵的某些代数性质。对于一个 n × n n \times n n×n 的方阵 A A A,其行列式记为 ∣ A ∣ |A| ∣A∣ 或 det ( A ) \det(A) det(A)。
-
计算方法:
- 对于
2
×
2
2 \times 2
2×2 矩阵:
det ( A ) = ∣ a b c d ∣ = a d − b c \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc det(A)= acbd =ad−bc - 对于 3 × 3 3 \times 3 3×3 矩阵,可以通过按行或按列展开的方式计算。
- 对于
2
×
2
2 \times 2
2×2 矩阵:
-
行列式的性质:
- ∣ A T ∣ = ∣ A ∣ |A^T| = |A| ∣AT∣=∣A∣
- 如果矩阵 A A A 是可逆的,那么 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}| = \frac{1}{|A|} ∣A−1∣=∣A∣1
- 两个矩阵的行列式的乘积等于这两个矩阵乘积的行列式,即 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A| \cdot |B| ∣AB∣=∣A∣⋅∣B∣
矩阵算术的这些基本操作构成了线性代数中的基础内容,掌握它们有助于解决各种线性代数问题,如求解线性方程组、进行变换与对称性分析等。