数学基础 -- 线性代数之矩阵运算

矩阵算术

矩阵算术是线性代数中的基本操作,它包括矩阵的加法、减法、标量乘法、矩阵乘法、转置以及逆矩阵等运算。掌握这些运算对于理解矩阵的性质和应用非常重要。以下是关于矩阵算术的详细讲解:

1. 矩阵的加法与减法
  • 定义:矩阵的加法和减法是逐元素进行的。这意味着,只有大小相同的矩阵(即行数和列数相同的矩阵)才能相加或相减。

  • 运算规则
    C = A + B 其中 C i j = A i j + B i j C = A + B \quad \text{其中} \quad C_{ij} = A_{ij} + B_{ij} C=A+B其中Cij=Aij+Bij
    D = A − B 其中 D i j = A i j − B i j D = A - B \quad \text{其中} \quad D_{ij} = A_{ij} - B_{ij} D=AB其中Dij=AijBij
    其中, A A A B B B 是相同大小的矩阵, C C C D D D 是加法和减法的结果矩阵。

  • 示例
    A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} A=(1324),B=(5768)
    A + B = ( 1 + 5 2 + 6 3 + 7 4 + 8 ) = ( 6 8 10 12 ) A + B = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} A+B=(1+53+72+64+8)=(610812)
    A − B = ( 1 − 5 2 − 6 3 − 7 4 − 8 ) = ( − 4 − 4 − 4 − 4 ) A - B = \begin{pmatrix} 1-5 & 2-6 \\ 3-7 & 4-8 \end{pmatrix} = \begin{pmatrix} -4 & -4 \\ -4 & -4 \end{pmatrix} AB=(15372648)=(4444)

2. 矩阵的标量乘法
  • 定义:标量乘法是将矩阵中的每一个元素与一个标量相乘。这个标量可以是一个实数、复数等。

  • 运算规则
    B = c ⋅ A 其中 B i j = c ⋅ A i j B = c \cdot A \quad \text{其中} \quad B_{ij} = c \cdot A_{ij} B=cA其中Bij=cAij
    其中, c c c 是一个标量, A A A 是一个矩阵, B B B 是乘法结果矩阵。

  • 示例
    A = ( 1 2 3 4 ) , c = 2 A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad c = 2 A=(1324),c=2
    c ⋅ A = 2 ⋅ ( 1 2 3 4 ) = ( 2 4 6 8 ) c \cdot A = 2 \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} cA=2(1324)=(2648)

3. 矩阵乘法
  • 定义:矩阵乘法不是逐元素进行的,而是通过行和列的点积来完成。两个矩阵相乘的前提条件是,第一个矩阵的列数必须等于第二个矩阵的行数。

  • 运算规则
    C = A ⋅ B 其中 C i j = ∑ k = 1 n A i k ⋅ B k j C = A \cdot B \quad \text{其中} \quad C_{ij} = \sum_{k=1}^{n} A_{ik} \cdot B_{kj} C=AB其中Cij=k=1nAikBkj
    其中, A A A 是一个 m × n m \times n m×n 矩阵, B B B 是一个 n × p n \times p n×p 矩阵,结果 C C C 是一个 m × p m \times p m×p 矩阵。

  • 示例
    A = ( 1 2 3 4 ) , B = ( 5 6 7 8 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} A=(1324),B=(5768)
    A ⋅ B = ( 1 × 5 + 2 × 7 1 × 6 + 2 × 8 3 × 5 + 4 × 7 3 × 6 + 4 × 8 ) = ( 19 22 43 50 ) A \cdot B = \begin{pmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix} AB=(1×5+2×73×5+4×71×6+2×83×6+4×8)=(19432250)

4. 矩阵的转置
  • 定义:矩阵的转置是将矩阵的行与列互换,得到一个新矩阵。

  • 运算规则
    B = A T 其中 B i j = A j i B = A^T \quad \text{其中} \quad B_{ij} = A_{ji} B=AT其中Bij=Aji
    其中, A A A 是一个 m × n m \times n m×n 矩阵,转置后的 B B B 是一个 n × m n \times m n×m 矩阵。

  • 示例
    A = ( 1 2 3 4 5 6 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} A=(142536)
    A T = ( 1 4 2 5 3 6 ) A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} AT= 123456

5. 矩阵的逆
  • 定义:一个方阵(行数等于列数)的逆矩阵是一个矩阵,满足原矩阵与其逆矩阵相乘结果为单位矩阵。

  • 运算规则
    A ⋅ A − 1 = I A \cdot A^{-1} = I AA1=I
    其中, A A A 是一个 n × n n \times n n×n 的可逆方阵, A − 1 A^{-1} A1 是它的逆矩阵, I I I n × n n \times n n×n 的单位矩阵。

  • 逆矩阵的计算:对于一个 2 × 2 2 \times 2 2×2 矩阵 A = ( a b c d ) A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} A=(acbd),其逆矩阵 A − 1 A^{-1} A1 为:
    A − 1 = 1 a d − b c ( d − b − c a ) A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} A1=adbc1(dcba)
    前提是 a d − b c ≠ 0 ad - bc \neq 0 adbc=0(即行列式不为零)。

  • 示例
    A = ( 1 2 3 4 ) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} A=(1324)
    A − 1 = 1 1 × 4 − 2 × 3 ( 4 − 2 − 3 1 ) = 1 − 2 ( 4 − 2 − 3 1 ) = ( − 2 1 1.5 − 0.5 ) A^{-1} = \frac{1}{1 \times 4 - 2 \times 3} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 1.5 & -0.5 \end{pmatrix} A1=1×42×31(4321)=21(4321)=(21.510.5)

6. 矩阵的行列式
  • 定义:行列式是方阵的一个标量值,反映了矩阵的某些代数性质。对于一个 n × n n \times n n×n 的方阵 A A A,其行列式记为 ∣ A ∣ |A| A det ⁡ ( A ) \det(A) det(A)

  • 计算方法

    • 对于 2 × 2 2 \times 2 2×2 矩阵:
      det ⁡ ( A ) = ∣ a b c d ∣ = a d − b c \det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc det(A)= acbd =adbc
    • 对于 3 × 3 3 \times 3 3×3 矩阵,可以通过按行或按列展开的方式计算。
  • 行列式的性质

    • ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A
    • 如果矩阵 A A A 是可逆的,那么 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}| = \frac{1}{|A|} A1=A1
    • 两个矩阵的行列式的乘积等于这两个矩阵乘积的行列式,即 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB| = |A| \cdot |B| AB=AB

矩阵算术的这些基本操作构成了线性代数中的基础内容,掌握它们有助于解决各种线性代数问题,如求解线性方程组、进行变换与对称性分析等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值