数学基础 --线性代数之正交多项式

正交多项式

1. 正交多项式的定义

正交多项式是在给定的权函数和定义域下,两个不同多项式的内积为零的一组多项式。设有权函数 w ( x ) w(x) w(x) 和定义域 [ a , b ] [a, b] [a,b],对于一组多项式 { p 0 ( x ) , p 1 ( x ) , p 2 ( x ) , …   } \{p_0(x), p_1(x), p_2(x), \dots\} {p0(x),p1(x),p2(x),},如果满足以下正交条件:

∫ a b p m ( x ) p n ( x ) w ( x )   d x = 0 ( m ≠ n ) \int_{a}^{b} p_m(x) p_n(x) w(x) \, dx = 0 \quad (m \neq n) abpm(x)pn(x)w(x)dx=0(m=n)

则称这组多项式是相对于权函数 w ( x ) w(x) w(x) 在区间 [ a , b ] [a, b] [a,b] 上的正交多项式。

2. 常见的正交多项式

2.1 勒让德多项式(Legendre Polynomial)

  • 定义域 [ − 1 , 1 ] [-1, 1] [1,1]
  • 权函数 w ( x ) = 1 w(x) = 1 w(x)=1
  • 递推关系
    P 0 ( x ) = 1 , P 1 ( x ) = x , ( n + 1 ) P n + 1 ( x ) = ( 2 n + 1 ) x P n ( x ) − n P n − 1 ( x ) P_0(x) = 1, \quad P_1(x) = x, \quad (n+1) P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x) P0(x)=1,P1(x)=x,(n+1)Pn+1(x)=(2n+1)xPn(x)nPn1(x)

2.2 切比雪夫多项式(Chebyshev Polynomial)

  • 定义域 [ − 1 , 1 ] [-1, 1] [1,1]
  • 权函数 w ( x ) = 1 1 − x 2 w(x) = \frac{1}{\sqrt{1-x^2}} w(x)=1x2 1
  • 递推关系
    T 0 ( x ) = 1 , T 1 ( x ) = x , T n + 1 ( x ) = 2 x T n ( x ) − T n − 1 ( x ) T_0(x) = 1, \quad T_1(x) = x, \quad T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) T0(x)=1,T1(x)=x,Tn+1(x)=2xTn(x)Tn1(x)

2.3 拉盖尔多项式(Laguerre Polynomial)

  • 定义域 [ 0 , ∞ ] [0, \infty] [0,]
  • 权函数 w ( x ) = e − x w(x) = e^{-x} w(x)=ex
  • 递推关系
    L 0 ( x ) = 1 , L 1 ( x ) = 1 − x , ( n + 1 ) L n + 1 ( x ) = ( 2 n + 1 − x ) L n ( x ) − n L n − 1 ( x ) L_0(x) = 1, \quad L_1(x) = 1 - x, \quad (n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - nL_{n-1}(x) L0(x)=1,L1(x)=1x,(n+1)Ln+1(x)=(2n+1x)Ln(x)nLn1(x)

2.4 埃尔米特多项式(Hermite Polynomial)

  • 定义域 ( − ∞ , ∞ ) (-\infty, \infty) (,)
  • 权函数 w ( x ) = e − x 2 w(x) = e^{-x^2} w(x)=ex2
  • 递推关系
    H 0 ( x ) = 1 , H 1 ( x ) = 2 x , H n + 1 ( x ) = 2 x H n ( x ) − 2 n H n − 1 ( x ) H_0(x) = 1, \quad H_1(x) = 2x, \quad H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x) H0(x)=1,H1(x)=2x,Hn+1(x)=2xHn(x)2nHn1(x)

3. 高斯-勒让德积分的使用案例

背景

我们需要计算定积分:

I = ∫ − 1 1 f ( x )   d x I = \int_{-1}^{1} f(x) \, dx I=11f(x)dx

高斯-勒让德积分方法通过正交多项式的根和权重来近似计算定积分。

步骤

  1. 确定勒让德多项式的根:使用 n n n 阶的勒让德多项式 P n ( x ) P_n(x) Pn(x),它有 n n n 个根,记为 x 1 , x 2 , … , x n x_1, x_2, \dots, x_n x1,x2,,xn
  2. 确定权重 w i w_i wi:对于每个根 x i x_i xi,我们可以计算对应的权重 w i w_i wi
  3. 近似积分:通过根和权重计算积分的近似值:
    I ≈ ∑ i = 1 n w i f ( x i ) I \approx \sum_{i=1}^{n} w_i f(x_i) Ii=1nwif(xi)

具体例子:使用 2 阶勒让德多项式

假设我们要计算以下积分:

I = ∫ − 1 1 ( x 2 + 1 )   d x I = \int_{-1}^{1} (x^2 + 1) \, dx I=11(x2+1)dx

  1. 勒让德多项式的根:2 阶勒让德多项式 P 2 ( x ) = 1 2 ( 3 x 2 − 1 ) P_2(x) = \frac{1}{2} (3x^2 - 1) P2(x)=21(3x21),其根为 x 1 = − 1 3 , x 2 = 1 3 x_1 = -\frac{1}{\sqrt{3}}, x_2 = \frac{1}{\sqrt{3}} x1=3 1,x2=3 1
  2. 权重:对应的权重 w 1 = w 2 = 1 w_1 = w_2 = 1 w1=w2=1
  3. 函数值
    f ( − 1 3 ) = 4 3 , f ( 1 3 ) = 4 3 f\left(-\frac{1}{\sqrt{3}}\right) = \frac{4}{3}, \quad f\left(\frac{1}{\sqrt{3}}\right) = \frac{4}{3} f(3 1)=34,f(3 1)=34
  4. 计算积分
    I ≈ 4 3 + 4 3 = 8 3 I \approx \frac{4}{3} + \frac{4}{3} = \frac{8}{3} I34+34=38

精确积分验证

通过直接积分:

I = ∫ − 1 1 ( x 2 + 1 )   d x = 8 3 I = \int_{-1}^{1} (x^2 + 1) \, dx = \frac{8}{3} I=11(x2+1)dx=38

可以看到,高斯-勒让德积分与精确积分的结果一致。

4. 时间与空间复杂度优化

时间复杂度

  • 传统数值积分方法:如梯形法和辛普森法的时间复杂度为 O ( n ) O(n) O(n),需要大量采样点来提高精度。
  • 高斯-勒让德积分:同样的时间复杂度 O ( n ) O(n) O(n),但由于采用正交多项式的根作为积分点,通常需要的积分点较少,计算效率更高。

空间复杂度

  • 传统方法:需要存储所有采样点和函数值,空间复杂度为 O ( n ) O(n) O(n)
  • 高斯积分:仅需存储少量的根和权重,减少了存储需求,空间复杂度仍为 O ( n ) O(n) O(n),但实际内存消耗较低。

优化效果总结

高斯-勒让德积分通过减少积分点的数量,降低了函数调用次数和存储需求,在时间和空间复杂度上都优于传统方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值