windows 训练yolov8/11官方数据集

第一步:安装Anaconda3-2024.06-1-Windows-x86_64.exe

下载地址:https://repo.anaconda.com/archive/

第二步:创建环境

 打开Anaconda Prompt 输入

conda info -e

打印: 

 已经安装了一些环境,然后我们创建新的环境:

conda create -n yolo python=3.8

输出: 

输入y,执行安装,安装完成后如图:

第三步:激活环境:

 conda activate yolo

第四步:安装pytorch

在cmd 输入 nvidia-smi 查看cuda版本

如果提示无法查看,则需要跟显卡版本查找对应的驱动,然后安装驱动。

然后可以看出cuda版本是 12.4

执行安装pytorch指令。

打开pytorch官网:https://pytorch.org/index.html

拷贝指令:然后执行安装:

 

第五步:安装 ultralytics

pip install ultralytics

 

第六步:安装依赖

conda install matplotlib

第七步:下载代码 

代码下载地址:https://github.com/ultralytics/ultralytics

第八步:在代码当前文件夹打开pycharm 

在该文件夹创建一个train.py 

from ultralytics import YOLO


if __name__ == '__main__':
    # Load a model
    model = YOLO("yolov8n.yaml")  # build a new model from scratch
    model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)
    model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

    # Use the model
    model.train(data='coco128.yaml',
                epochs=200, batch = 8, workers = 2,
                save = True,imgsz = 1024,
                save_period = 5, val = True)  # train the model

第九步:配置解析器 

可以通过

conda info -e

指令查看yolo环境目录

第十步:打开train.py执行运行

训练完成后如图:

查看结果: 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值