分水岭算法

本文介绍了一种基于地形学概念的图像分割方法——分水岭算法。该算法将图像视为三维地形,通过模拟水流和汇水盆地的概念来提取对象边界。文章详细介绍了分水岭算法的原理、步骤,并提供了MATLAB代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:

http://met.fzu.edu.cn/dip/c10_5.htm

http://blog.csdn.net/zd0303/article/details/6703068

分水岭概念是以对图像进行三维可视化处理为基础的:其中两个是坐标,另一个是灰度级。对于这样:一种“地形学”的解释,我们考虑三类点:(a)属于局部性最小值的点;(b)当一滴水放在某点的位置上的时候,水一定会下落到一个单一的最小值点;(c)当水处在某个点的位置上时,,水会等概率地流向不止一个这样的最小值点。对一个特定的区域最小值,满足条件(b)的点的集合称为这个最小值的“汇水盆地”或“分水岭”。满足条件(c)的点的集合组成地形表面的峰线,术语称做“分割线”或“分水线”。

基于这些概念的分割算法的主要目标是找出分水线。基本思想很简单:假设在每个区域最小值的位置上打一个洞并且让水以均匀的上升速率从洞中涌出,从低到高淹没整个地形。当处在不同的汇聚盆地中的水将要聚合在一起时,修建的大坝将阻止聚合。水将只能到达大坝的顶部处于水线之上的程度。这些大坝的边界对应于分水岭的分割线。所以,它们是由分水岭算法提取出来的(连续的)边界线。

这些思想可以用图10.44作为辅助做进一步的解释。图10.44(a)显示了一个简单的灰度级图像。图10.44(b)是地形图。其中“山峰”的高度与输入图像的灰度级值成比例。为了易于解释,这个结构的后方被遮蔽起来。这是为了不与灰度级值相混淆;三维表达对一般地形学是很重要的。为了阻止上升的水从这些结构的边缘溢出,我们想像将整幅地形图的周围用比最高山峰还高的大坝包围起来。最高山峰的值是由输入图像灰度级可能具有的最大值决定的。

假设在每个区域最小值中打一个洞[如图10.44(b)中的深色区域],并且让水以均匀的上升速率从洞中涌出,从低到高淹没整个地形。图10.44(c)说明被水淹没的第一个阶段,这里水用浅灰色表示,覆盖了对应于图中深色背景的区域。在图10.44(d)和(e)中,我们看到水分别在第一和第二汇水盆地中上升。由于水持续上升,最终水将从一个汇水盆地中溢出到另一个之中。图10.44(f)中显示了溢出的第一个征兆。这里,水确实从左边的盆地溢出到右边的盆地,并且两者之间有一个短“坝”(由单像素构成)阻止这一水位的水聚合在一起(在接下来的章节中将讨论坝的构筑)。由于水位不断上升,实际的效果要超出我们所说的。如图10.44(g)所显示的那样。这幅图中在两个汇水盆地之间显示了一条更长的坝,另一条水坝在右上角。这条水坝阻止了盆地中的水和对应于背景的水的聚合。这个过程不断延续直到到达水位的最大值(对应于图像中灰度级的最大值)。水坝最后剩下的部分对应于分水线,这条线就是要得到的分割结果。

对于这个例子,在图l0.44(h)中显示为叠加到原图上的一个像素宽的深色路径。注意一条重要的性质就是分水线组成一条连通的路径,由此给出了区域之间的连续的边界。

分水岭分割法的主要应用是从背景中提取近乎一致(类似水滴的)的对象。那些在灰度级上变化较小的区域的梯度值也较小。因此,实际上,我们经常可以见到分水岭分割方法与图像的梯度有更大的关系,而不是图像本身。有了这样的表示方法,汇水盆地的局部最小值就可以与对应于所关注的对象的小的梯度值联系起来了。


分水岭分割算法(MATLAB代码)

      如果图像中的目标物体是连在一起的,则分割起来会更困难,分水岭算法经常用于处理这类问题,通常会取得比较好的效果。分水岭分割算法把图像看成一副“地形图”,其中亮度比较强的地区像素值较大,而比较暗的地区像素比较小,通过寻找“汇水盆地”和“分水岭界限”,对图像进行分割。

步骤:

1.读取图像

2.求取图像的边界,在此基础上可直接应用分水岭分割算法,但效果不佳;

3.对图像的前景和背景进行标记,其中每个对象内部的前景像素都是相连的,背景里面的每个像素值都不属于任何目标物体;

4.计算分割函数,应用分水岭分割算法的实现

    注:直接用分水岭分割算法效果并不好,如果在图像中对前景和背景进行标注区别,再应用分水岭算法会取得较好的分割效果。

例 步骤:

1.读取图像并求取图像的边界。

rgb = imread('pears.png');%读取原图像
I = rgb2gray(rgb);%转化为灰度图像
figure; subplot(121)%显示灰度图像
imshow(I)
text(732,501,'Image courtesy of Corel',...
     'FontSize',7,'HorizontalAlignment','right')
hy = fspecial('sobel');%sobel算子
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');%滤波求y方向边缘
Ix = imfilter(double(I), hx, 'replicate');%滤波求x方向边缘
gradmag = sqrt(Ix.^2 + Iy.^2);%求摸
subplot(122); imshow(gradmag,[]), %显示梯度
title('Gradient magnitude (gradmag)')

2. 直接使用梯度模值进行分水岭算法:(往往会存在过的分割的情况,效果不好)

L = watershed(gradmag);%直接应用分水岭算法
Lrgb = label2rgb(L);%转化为彩色图像
figure; imshow(Lrgb), %显示分割后的图像
title('Watershed transform of gradient magnitude (Lrgb)')

3.分别对前景和背景进行标记:本例中使用形态学重建技术对前景对象进行标记,首先使用开操作,开操作之后可以去掉一些很小的目标。

se = strel('disk', 20);%圆形结构元素
Io = imopen(I, se);%形态学开操作
figure; subplot(121)
imshow(Io), %显示执行开操作后的图像
title('Opening (Io)')
Ie = imerode(I, se);%对图像进行腐蚀
Iobr = imreconstruct(Ie, I);%形态学重建
subplot(122); imshow(Iobr), %显示重建后的图像
title('Opening-by-reconstruction (Iobr)')
Ioc = imclose(Io, se);%形态学关操作
figure; subplot(121)
imshow(Ioc), %显示关操作后的图像
title('Opening-closing (Ioc)')
Iobrd = imdilate(Iobr, se);%对图像进行膨胀
Iobrcbr = imreconstruct(imcomplement(Iobrd), ...
    imcomplement(Iobr));%形态学重建
Iobrcbr = imcomplement(Iobrcbr);%图像求反
subplot(122); imshow(Iobrcbr), %显示重建求反后的图像
title('Opening-closing by reconstruction (Iobrcbr)')
fgm = imregionalmax(Iobrcbr);%局部极大值
figure; imshow(fgm), %显示重建后局部极大值图像
title('Regional maxima of opening-closing by reconstruction (fgm)')
I2 = I;
I2(fgm) = 255;%局部极大值处像素值设为255
figure; imshow(I2), %在原图上显示极大值区域
title('Regional maxima superimposed on original image (I2)')
se2 = strel(ones(5,5));%结构元素
fgm2 = imclose(fgm, se2);%关操作
fgm3 = imerode(fgm2, se2);%腐蚀
fgm4 = bwareaopen(fgm3, 20);%开操作
I3 = I;
I3(fgm4) = 255;%前景处设置为255
figure; subplot(121)
imshow(I3)%显示修改后的极大值区域
title('Modified regional maxima')
bw = im2bw(Iobrcbr, graythresh(Iobrcbr));%转化为二值图像
subplot(122); imshow(bw), %显示二值图像
title('Thresholded opening-closing by reconstruction')

4. 进行分水岭变换并显示:

D = bwdist(bw);%计算距离
DL = watershed(D);%分水岭变换
bgm = DL == 0;%求取分割边界
figure; imshow(bgm), %显示分割后的边界
title('Watershed ridge lines (bgm)')
gradmag2 = imimposemin(gradmag, bgm | fgm4);%置最小值
L = watershed(gradmag2);%分水岭变换
I4 = I;
I4(imdilate(L == 0, ones(3, 3)) | bgm | fgm4) = 255;%前景及边界处置255
figure; subplot(121)
imshow(I4)%突出前景及边界
title('Markers and object boundaries')
Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');%转化为伪彩色图像
subplot(122); imshow(Lrgb)%显示伪彩色图像
title('Colored watershed label matrix')
figure; imshow(I), 
hold on
himage = imshow(Lrgb);%在原图上显示伪彩色图像
set(himage, 'AlphaData', 0.3);
title('Lrgb superimposed transparently on original image')


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值