论文素材

Distribution Alignment

Stochastic Classifiers for Unsupervised Domain Adaptation观点

将distribution alignment分为了两类,分别是全局对齐(global alignment)和局部对齐(local alignment)。全局对齐常用的方法包括MMD、CMD(central moment discrepancy)、wasserstein distance,由于这些方法忽略了局部的类层面上的对齐,使得这种对齐可能达到的效果是局部次优解。因此介绍了基于局部对齐的方法,几个研究对象分别是基于像素层面的对齐、分类器输出层面的对齐以及用于语义分割的内容层面的对抗损失。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值