Distribution Alignment
Stochastic Classifiers for Unsupervised Domain Adaptation观点
将distribution alignment分为了两类,分别是全局对齐(global alignment)和局部对齐(local alignment)。全局对齐常用的方法包括MMD、CMD(central moment discrepancy)、wasserstein distance,由于这些方法忽略了局部的类层面上的对齐,使得这种对齐可能达到的效果是局部次优解。因此介绍了基于局部对齐的方法,几个研究对象分别是基于像素层面的对齐、分类器输出层面的对齐以及用于语义分割的内容层面的对抗损失。