自然语言处理:Python 与 NLTK 入门
1. 自然语言处理简介
语言是我们日常生活的核心部分,处理与语言相关的问题十分有趣。自然语言处理(NLP)本质上是计算语言学的应用,计算语言学家是具备语言知识并能运用计算技能对语言各方面进行建模的计算机科学家。
在实际应用中,NLP 类似于教孩子学习语言。人类能自然完成的理解单词、句子以及构建语法和结构正确的句子等任务,在 NLP 中对应着分词、组块分析、词性标注、句法分析、机器翻译和语音识别等,而这些对计算机来说仍是极具挑战的任务。
1.1 学习 NLP 的原因
从 Gartner 的新炒作周期来看,NLP 处于周期顶部,是当前行业急需的稀缺技能。大数据时代,我们面临的主要挑战是需要更多能处理半结构化或非结构化数据的人才。如今,我们产生了大量的网络日志、推文、Facebook 动态、聊天记录、电子邮件和评论等数据,企业收集这些数据用于更好地定位客户和获取有价值的见解,因此需要懂 NLP 的人来处理这些非结构化数据。
以下是一些常见的 NLP 应用示例:
- 拼写检查(如 MS Word 或其他编辑器中的功能)
- 搜索引擎(Google、Bing、Yahoo、wolframalpha 等)
- 语音引擎(Siri、Google Voice 等)
- 垃圾邮件分类器(所有电子邮件服务中均有)
- 新闻推送(Google、Yahoo! 等)
- 机器翻译(Google Translate 等)
- IBM Watson
构建这些应用需要特定的技能和对语言的深入理解,以及高效处理语言的工具。目前有许多开源
超级会员免费看
订阅专栏 解锁全文
113

被折叠的 条评论
为什么被折叠?



