【NeurIPS'22教程】图神经网络TensorFlow实战指南

08e3c9ee4c2441e86ebf655bce65eadb.png

来源:专知
本文为教程介绍,建议阅读5分钟
本教程的实践部分将基于TF-GNN,这是一个用于处理TensorFlow中的图形结构化数据的库。

65d2c360b1b4dc72384854521f05328d.jpeg

图是通用的数据结构,可以表示来自各种领域(社会、生物医学、在线事务等)的信息。图神经网络(GNNs)是在神经网络模型中使用图结构数据的一种令人兴奋的方法,这种方法最近非常流行。然而,在大型(和复杂)数据集上实现和运行gnn仍然给机器学习平台带来了许多挑战。

感谢您对我们的教程感兴趣!本教程的主要目标是帮助从业者和研究人员在TensorFlow设置中实现GNN。具体来说,该教程将主要是实践,并将引导观众通过在异构图数据上运行现有GNN的过程,并介绍如何实现新的GNN模型。本教程的实践部分将基于TF-GNN,这是一个用于处理TensorFlow中的图形结构化数据的库。

https://github.com/tensorflow/gnn/tree/main/examples/tutorials/neurips_2022

259b86fd1891ce9c8f1760a1c6bfb91e.jpeg

8dadc4afd4017b82fcaac55a07cdebc3.jpeg

f0f7dd6e3ae10ccaf05b2f12b51a7672.jpeg

817d7e501e21c974782e319263725661.jpeg

db0bb254d5205739c798833a28886a15.jpeg

e465771dcd20b41750a4e912c01da729.jpeg

e843ebec74546714105181e09f46e738.jpeg

988d156cd9969f4b3f80b68362d3a35e.jpeg

12f6d268d9168b7c10de5c98e443a8f3.jpeg

ae1df7810ca798731b94fbe328a400d2.jpeg

385eb27001fe9eec992965a79702a220.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值