【悉尼大学博士论文】基于图神经网络的几何信号处理

1dc5fca8194cc697e0a0a719c134c620.png

来源:专知
本文为论文介绍,建议阅读5分钟
这篇论文的目标是阐明一些关于数学的概述问题。

62bbdaa9b56ab34693d005394bd061ac.png

在许多现代应用中取得显著成功的最主要的技术之一是深度学习。对图像识别、语音处理和文本理解中的海量数据分析的痴迷,促使深度神经网络在不同研究领域的不同学习任务中取得了显著进展。深度学习技术联盟产生了强大的卷积神经网络和新兴的图神经网络。图神经网络(Graph neural networks),简称GNNs,是一种输入包含内部结构关系的深度神经网络。图神经网络(GNNs)的主流找到了图的充分数值表示,这对统计或机器学习模型的预测性能至关重要。图表示学习在现实世界中有许多应用,如药物再利用、蛋白质分类、流行病传播控制和社会网络分析等。在过去五年中,GNN的快速发展过程中,发现了一些设计缺陷,如过度平滑、易受扰动、缺乏表现力和缺乏可解释性。同时,对该研究领域的持续热情为解决更复杂的问题积累了经验,如大小可变图压缩和时变图动态捕获。

https://ses.library.usyd.edu.au/handle/2123/28617

这篇论文的目标是阐明一些关于数学的概述问题。其中,图压缩的置换不变设计支持流形学习,鲁棒的图平滑依赖于凸优化原理,高效的动态图表示学习借鉴了信号处理和矩阵分解的随机幂方法。作者认为,深度学习技术的有效性不应该仅仅取决于在特定数据集上的性能,对黑盒模型的修改应该在皮肤层之下进行,并比超参数调整付出更多的努力。深度神经网络的可靠性期待着在严格的数学支持下设计模型,以便有一天“计算机科学”成为真正的科学。

0dbc5ed249b1669a70b1269e9fe3cc70.png

c472be441db928542f7bac3cb8eac514.png

4ca8c0e515211f19413eab10286cbca9.png

d2856f7b57f282b08ef3d01b6339161f.png

52c1abb6b51f3d297ae3c3d5187055c5.png

《RSMA与速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMA与MMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射与接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值