大家好,我是算想未来的创始人CEO赵亚雄。今天非常高兴到母校来做简短的分享。我们最近会几乎是被ChatGPT、OpenAI等等话题各类的信息轮番轰炸。我希望借助这个机会,把自己这一段时间来思考的有关AI基础设施还有AGI再到大模型等内容,从相对抽象的概念到与大家关系密切的、具体到各个层面的部分内容串联起来。整个的脉络会沿着一个相对宏观,然后再具体到计算机科学、计算机产业、软件产业的发展角度来描述有关联性的事件和事件背后的因果关系,以及一些思考的框架和方式。
我们首先从智能的定义开始。无论是从牛津的词典还是维基百科、百度百科,它们对智能的定义基本都是围绕在“获取和运用知识”的过程。如果放到一个现实的场景里面,如下面图里所示的放风筝的场景,我们把一个五岁的小朋友作为一个观察的主体,我们会看到,他在发生一系列事件之后,可以根据之前的人生经历看到的具体的事物来对这件事情产生非常多的反应。比如,首先他会意识到自己要用腿来把线压住,因为风比较大,他用自己的手是不一定能很好地控制住风筝的这条线。他很容易感到要用自己身体更大的力气,或者是身体的重量来控制这个线。但是他对“风筝需要用线不停地抓住”这件事情没有潜意识的惯性的认知。所以即便他在一开始意识到风筝需要用腿去压着,他之后也可能会忘记,让风筝飞走了。
但飞走的时候,他会有一个反馈,他会说“之后还是由妈妈来拿”。因为他发现自己还不能很好地控制风筝线。之后我们又问他,现在风筝已经挂到了大树上面,你应该怎样才能把它弄下来?他就会提到很多我们认为很普通的一些反应。比如,他说要找超人、要找消防队员去摇晃大树,或者把家里的梯子带过来。这里很明显是把大脑之前的各类记忆运用到一个新的场景。从人工的角度去模拟这样的行为,是现在人工智能研究的一个核心。但是,这里实际上会有两种方式的人工智能的研究路径:一种路径尝试理解智能背后的更底层的、更具有结构化特性的,更容易理解的逻辑或者理论;另外一种方式直接让某种人造的计算过程或者是软件或硬件形成一个整体的过程,表现出人的行为。像python语言中的duck typing类似的观念来描述,这个人如果说话像人,行为模式像人,他也有人利用知识和周围的环境来完成复杂任务的行为表现能力,那它就是一个人工智能。
回到ChatGPT,它为什么会被认为是一个划时代的人工智能突破呢?其实就体现在我们刚才看到的人的例子上。实际上,它是把一种内在的概念在不同的任务场景下自动进行泛化。比如这里的情绪分析sentiment analysis,没有做任何的训练,只是通过输入相应的前缀文字就可以获得想要的输出。
从语言模型训练的过程来看,它实际上并没有对语句进行sentiment analysis,只是对下一个单词的出现概率进行猜测。这跟我们所理解的看到一段话或者看到一个句子之后,在头脑中能形成对句子的情绪反应的思维过程完全不相干。但是我们仅仅是用这样的一种方式,最后也可以达到我们预期中的效果。那另外一种能力是通过特定的提示语去引导这个大模型,让它可以把我们所谓的思考过程延续下去。下面这个例子就是在第一次给出错误的问题答案之后,我们再给它做提示,最后把正确的答案给出来。这个过程是以往任何人工智能所不具备的。我们也看到即便是我们现在对人的智能理解已经如此深的情况下,泛化和思维链条这两种能力同样给人难以想象的震撼。我们看到在这个大模型的基础上,做相应的这个应用开发的框架,比如这里的longchain和Auto-GPT。我们看到它在Github star上面有快速的增长,这跟ChatGPT这么快能拥有全球两亿用户也有关系。