【ICLR2025】AdaWM:基于自适应世界模型的自动驾驶规划

4008811ab28d2bfac7c74a2151b4025f.png

来源:专知
本文约1000字,建议阅读5分钟
在强化学习中简单地执行这种初始化可能会导致在新任务的在线交互过程中性能显著下降。

ea1adbbfa93fb5a83132aa7b390c2812.png

世界模型驱动的强化学习(RL)已成为自动驾驶领域一个有前景的方法,它通过学习潜在的动态模型,并利用该模型来训练规划策略。为了加速学习过程,通常采用预训练-微调范式,其中在线强化学习通过一个预训练的模型初始化,并且策略是在离线学习的。然而,在强化学习中简单地执行这种初始化可能会导致在新任务的在线交互过程中性能显著下降。为了解决这一挑战,我们首先分析了性能下降的原因,并识别出了其中的两个主要根本原因:规划策略的不匹配和动态模型的不匹配,这些问题源于分布变化。我们进一步分析了这些因素在微调过程中对性能下降的影响,研究结果表明,微调策略的选择在缓解这些影响方面起到了关键作用。接着,我们提出了AdaWM,一种基于自适应世界模型的规划方法,包含两个关键步骤:(a)不匹配识别,它量化了不匹配的程度并为微调策略提供指导;(b)基于对齐的微调,它根据需要选择性地更新策略或模型,并使用高效的低秩更新方法。通过在具有挑战性的CARLA自动驾驶任务上的大量实验,AdaWM显著改善了微调过程,从而在自动驾驶系统中实现了更强大且高效的性能。

09b4284d72641ea545b559ad8510eddb.png

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

91077cdc3db835662fd2d155058f3060.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

### ICLR 2025 自动驾驶研究主题概述 ICLR (International Conference on Learning Representations) 是机器学习领域的重要会议之一,尤其关注深度学习及其应用。在 ICLR 2025 中,自动驾驶成为了一个备受瞩目的研究方向,其中涉及多个前沿技术与理论突破。 #### PreWorld: 半监督视觉中心的三维占用世界模型 一篇名为 **Semi-Supervised Vision-Centric 3D Occupancy World Model for Autonomous Driving** 的论文提出了一个称为 *PreWorld* 的框架[^1]。该方法旨在通过半监督学习构建一个精确的三维环境表示(occupancy world model),用于支持自动驾驶车辆感知周围动态场景的能力。具体而言: - 它利用激光雷达数据和摄像头图像作为输入源,融合多模态传感器信息来提高建模精度。 - 提出了基于自编码器架构的设计方案,在减少标注需求的同时保持较高的预测性能。 - 验证结果显示此模型能够有效捕捉复杂交通环境中物体的位置分布特性以及时间演变规律。 #### DynamicCity: 动态城市环境下的LiDAR生成技术 另一项重要贡献来自 **DynamicCity** 方法的研究成果。这项工作专注于解决如何高效模拟真实世界的动态变化过程,并将其应用于训练更鲁棒性的自动驾驶系统: - 开发出一种新颖的时间序列条件变分自动编码器(TCVAE),可以生成逼真的未来时刻 LiDAR 扫描图谱。 - 结合强化学习机制优化动作策略规划流程,从而提升决策质量并降低潜在风险水平。 此外值得注意的是,《顶会顶刊12节论文写作课》也提到了此类高质量研究成果背后所蕴含的方法论价值——即从实际问题出发探索创新解决方案的重要性[^2] 。这不仅限于算法设计本身,还包括整个科研过程中诸如选题依据确立、实验设计方案制定等方面的知识积累与实践经验分享。 ```python # 示例代码片段展示TCVAE核心部分实现逻辑概览 import torch.nn as nn class TCVAE(nn.Module): def __init__(self, input_dim, latent_dim=64): super().__init__() self.encoder = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Linear(128, latent_dim * 2) # 输出均值向量μ 和 对数方差logσ² ) ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值