手把手教你用Python处理非平稳时间序列(附代码)

本文介绍了时间序列分析中平稳性的重要性,通过目视检验和统计检验(ADF、KPSS)来判断时间序列是否平稳。讨论了平稳序列的三种类型,并展示了如何通过差分和变换对序列进行平稳化处理,以准备进行时间序列预测模型的构建。
摘要由CSDN通过智能技术生成

640?wx_fmt=png

作者:AISHWARYA SINGH

翻译:陈之炎

校对:丁楠雅

本文约3600字,建议阅读10分钟

本文将重点介绍时间序列数据的平稳性检验方法。


简介


预测一个家庭未来三个月的用电量,估计特定时期道路上的交通流量,预测一只股票在纽约证券交易所交易的价格……这些问题都有什么共同点?

 

它们都属于时间序列数据的范畴!如果没有“时间”成分,就无法准确地预测出结果。随着我们周围世界产生的数据越来越多,时间序列预测已成为数据科学家必须掌握的一项越来越关键的技能。


然而,时间序列是一个复杂的话题,它具有多面性。


640?wx_fmt=png


首先,要想使预测模型正常工作,就必须使时间序列保持平稳。为什么?因为绝大部分原始数据都会有非平稳的趋势。如果有很多不规则的尖峰,你怎么能确保模型正常工作呢?


本文将重点介绍时间序列数据的平稳性检验方法。在此假设读者已熟悉时间序列、ARIMA和平稳性的概念,以下是一些包含基础内容的参考资料:


  • 时间序列建模完整教程

  • 给初学者的时间序列预测综合指南


目录


1. 平稳简介

2. 加载数据

3. 检验平稳的方法

  • ADF检验

  • KPSS检验

4. 平稳的种类

  • 严格平稳

  • 趋势平稳

  • 差分平稳

5. 时间序列平稳化

  • 差分

  • 季节性差分

  • 对数变换



1. 平稳简介


 “平稳”是处理时间序列数据时遇到的最重要的概念之一:平稳序列是指其特性-均值、方差和协方差不随时间而变化的序列。


让我们用一个直观的例子来理解这一点。考虑以下三个图形:


640?wx_fmt=png

好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。 首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型: 1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。 2. 定义Transformer模型的编码器和解码器部分。 3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。 4. 实现残差连接(residual connection)和层归一化(layer normalization)。 5. 定义Transformer模型的训练和评估过程。 下面是一个简单的示例代码,用于实现一个基本的Transformer模型: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.datasets import TranslationDataset, Multi30k from torchtext.data import Field, BucketIterator # 定义输入和输出的词汇表 SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True) TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True) # 加载数据集 train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG)) SRC.build_vocab(train_data, min_freq=2) TRG.build_vocab(train_data, min_freq=2) # 定义Transformer模型的编码器和解码器部分 class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src: [batch_size, src_len] # src_mask: [batch_size, 1, 1, src_len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) # pos: [batch_size, src_len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask):
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值