leetcode刷题38——区域和检索系列

这篇博客介绍了两种数据结构优化技术——前缀和,用于快速计算数组或矩阵中连续子区域的和。首先,通过前缀和优化,实现了不可变数组和矩阵的区域和检索,提高了查询效率。接着,针对数组可修改的情况,引入了线段树数据结构,支持更新元素值的同时,仍能高效地进行区间和查询。这些技术在处理动态范围查询和更新问题时非常有用。
摘要由CSDN通过智能技术生成

1.区域和检索 - 数组不可变
给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。实现 NumArray 类:
NumArray(int[] nums) 使用数组 nums 初始化对象
int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点(也就是sum(nums[i], nums[i + 1], … , nums[j]))
考察知识点:前缀和

class NumArray {
public:
    vector<int> v;
    NumArray(vector<int>& nums) {
        v=nums;
        for(int i=1;i<v.size();++i)
            v[i]+=v[i-1];
    }  
    int sumRange(int left, int right) {
        if(left==0) return v[right];
        return v[right]-v[left-1];
    }
};

或者

class NumArray {
public:
    vector<int> sums;
    NumArray(vector<int>& nums) {
        sums.resize(nums.size() + 1);
        for (int i = 0; i < nums.size(); i++) 
            sums[i + 1] = sums[i] + nums[i];
    }
    int sumRange(int i, int j) {
        return sums[j + 1] - sums[i];
    }
};

2.二维区域和检索 - 矩阵不可变
考察知识点:前缀和

class NumMatrix {
public:
    vector<vector<int>> v;
    NumMatrix(vector<vector<int>>& matrix) {
        v=matrix;
        for(int i=1;i<v.size();++i)
            v[i][0]+=v[i-1][0];
        for(int j=1;j<v[0].size();++j)
            v[0][j]+=v[0][j-1];
        for(int i=1;i<v.size();++i)
            for(int j=1;j<v[0].size();++j)
               v[i][j]=v[i-1][j]+v[i][j-1]-v[i-1][j-1]+v[i][j];
    }
    int sumRegion(int row1, int col1, int row2, int col2) {
        if(row1>0&&col1>0)   return v[row2][col2]-v[row1-1][col2]-v[row2][col1-1]+v[row1-1][col1-1];
        if(row1==0&&col1>0)  return v[row2][col2]-v[row2][col1-1];
        if(row1>0&&col1==0)  return v[row2][col2]-v[row1-1][col2];
        else return v[row2][col2];
    }
};

或者

class NumMatrix {
public:
    vector<vector<int>> sums;
    NumMatrix(vector<vector<int>>& matrix) {
        if (matrix.size() > 0) {
            sums.resize(matrix.size() + 1, vector<int>(matrix[0].size() + 1));
            for (int i = 0; i < matrix.size(); i++) 
                for (int j = 0; j < matrix[0].size(); j++) 
                    sums[i+1][j+1]=sums[i][j+1]+sums[i+1][j]-sums[i][j]+matrix[i][j];              
        }
    }
    int sumRegion(int row1, int col1, int row2, int col2) {
        return sums[row2+1][col2+1]-sums[row1][col2+1]-sums[row2+1][col1]+sums[row1][col1];
    }
};

3.区域和检索 - 数组可修改
给你一个数组 nums ,请你完成两类查询,其中一类查询要求更新数组下标对应的值,另一类查询要求返回数组中某个范围内元素的总和。实现 NumArray 类:
NumArray(int[] nums) 用整数数组 nums 初始化对象
void update(int index, int val) 将 nums[index] 的值更新为 val
int sumRange(int left, int right) 返回子数组 nums[left, right] 的总和(即,nums[left] + nums[left + 1], …, nums[right])
考察知识点:线段树

class NumArray {
public:
    vector<int> v;
    int n;
    NumArray(vector<int>& nums) {
        n=nums.size();
        v.resize(2*n);
        for(int i=n,j=0;i<2*n;++i,++j)
            v[i]=nums[j];
        for(int i=n-1;i>0;--i)
            v[i]=v[2*i]+v[2*i+1];
    }
    
    void update(int index, int val) {
        index+=n;
        v[index]=val;
        while(index>0) //*
        {
            int left=index;
            int right=index;
            if(index%2) left=index-1;
            else    right=index+1;
            index/=2;
            v[index]=v[left]+v[right];
        }
    }
    
    int sumRange(int left, int right) {
        left+=n;
        right+=n;
        int sum=0;
        while(left<=right)
        {
            if(left%2==1)
            {
                sum+=v[left];
                ++left;
            }
            if(right%2==0)
            {
                sum+=v[right];
                --right;
            }
            left/=2;
            right/=2;
        }
        return sum;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

给算法爸爸上香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值