onnxruntime推理
使用mmdeploy导出onnx模型:
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK
# img = './bus.jpg'
# work_dir = './work_dir/onnx/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cpu'
img = './bus.jpg'
work_dir = './work_dir/onnx/mask2former'
save_file = './end2end.onnx'
deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cpu'
# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)
# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
自行编写python推理脚本,目前SDK尚未支持:
import cv2
import numpy as np
import onnxruntime
# import torch
# import torch.nn.functional as F
num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):
palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))
def resize_keep_ratio(image, img_scale):
h, w = image.shape[0], image.shape[1]
max_long_edge = max(img_scale)
max_short_edge = min(img_scale)
scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
scale_w = int(w * float(scale_factor ) + 0.5)
scale_h = int(h * float(scale_factor ) + 0.5)
img_new = cv2.resize(image, (scale_w, scale_h))
return img_new
def draw_binary_masks(img, binary_masks, colors, alphas=0.8):
binary_masks = binary_masks.astype('uint8') * 255
binary_mask_len = binary_masks.shape[0]
alphas = [alphas] * binary_mask_len
for binary_mask, color, alpha in zip(binary_masks, colors, alphas):
binary_mask_complement = cv2.bitwise_not(binary_mask)
rgb = np.zeros_like(img)
rgb[...] = color
rgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)
img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)
rgb = rgb + img_complement
img = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)
cv2.imwrite("output.jpg", img)
if __name__=="__main__":
image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')
image_resize = resize_keep_ratio(image, resize_shape)
input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHW
input[0,:] = (input[0,:] - 123.675) / 58.395
input[1,:] = (input[1,:] - 116.28) / 57.12
input[2,:] = (input[2,:] - 103.53) / 57.375
input = np.expand_dims(input, axis=0)
import ctypes
ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/onnxruntime.dll')
session_options = onnxruntime.SessionOptions()
session_options.register_custom_ops_library('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_onnxruntime_ops.dll')
onnx_session = onnxruntime.InferenceSession('E:/vscode_workspace/mmdeploy-1.3.1/work_dir/onnx/mask2former/end2end.onnx', session_options, providers=['CPUExecutionProvider'])
input_name = []
for node in onnx_session.get_inputs():
input_name.append(node.name)
output_name=[]
for node in onnx_session.get_outputs():
output_name.append(node.name)
inputs = {}
for name in input_name:
inputs[name] = input
outputs = onnx_session.run(None, inputs)
batch_cls_logits = outputs[0]
batch_mask_logits = outputs[1]
mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]
#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]
mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))
for i in range(mask_pred_results.shape[0]):
mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
mask_cls = batch_cls_logits[0]
#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)
scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)
labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)
#mask_pred = mask_pred.sigmoid()
mask_pred = 1/ (1 + np.exp(-mask_pred))
#keep = labels.ne(num_classes) & (scores > object_mask_thr)
keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
cur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)
cur_mask_ids = cur_prob_masks.argmax(0)
instance_id = 1
for k in range(cur_classes.shape[0]):
pred_class = int(cur_classes[k].item())
isthing = pred_class < num_things_classes
mask = cur_mask_ids == k
mask_area = mask.sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
if mask_area > 0 and original_area > 0:
if mask_area / original_area < iou_thr:
continue
if not isthing:
panoptic_seg[mask] = pred_class
else:
panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)
instance_id += 1
ids = np.unique(panoptic_seg)[::-1]
ids = ids[ids != num_classes]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (panoptic_seg[None] == ids[:, None, None])
colors = [palette[label] for label in labels]
draw_binary_masks(image, segms, colors)
tensorrt推理
使用mmdeploy导出engine模型:
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.tensorrt.onnx2tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os
# img = 'bus.jpg'
# work_dir = './work_dir/trt/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1067x800.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cuda'
img = 'bus.jpg'
work_dir = './work_dir/trt/mask2former'
save_file = './end2end.onnx'
deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1088x800.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cuda'
# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)
# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)
# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
自行编写python推理脚本,目前SDK尚未支持:
maskformer
import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):
palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))
def resize_keep_ratio(image, img_scale):
h, w = image.shape[0], image.shape[1]
max_long_edge = max(img_scale)
max_short_edge = min(img_scale)
scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
scale_w = int(w * float(scale_factor ) + 0.5)
scale_h = int(h * float(scale_factor ) + 0.5)
img_new = cv2.resize(image, (scale_w, scale_h))
return img_new
def draw_binary_masks(img, binary_masks, colors, alphas=0.8):
binary_masks = binary_masks.astype('uint8') * 255
binary_mask_len = binary_masks.shape[0]
alphas = [alphas] * binary_mask_len
for binary_mask, color, alpha in zip(binary_masks, colors, alphas):
binary_mask_complement = cv2.bitwise_not(binary_mask)
rgb = np.zeros_like(img)
rgb[...] = color
rgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)
img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)
rgb = rgb + img_complement
img = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)
cv2.imwrite("output.jpg", img)
if __name__=="__main__":
logger = trt.Logger(trt.Logger.WARNING)
ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')
with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/maskformer/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)
d_input = cuda.mem_alloc(h_input.nbytes)
d_output0 = cuda.mem_alloc(h_output0.nbytes)
d_output1 = cuda.mem_alloc(h_output1.nbytes)
stream = cuda.Stream()
image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')
image_resize = resize_keep_ratio(image, resize_shape)
input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHW
input[0,:] = (input[0,:] - 123.675) / 58.395
input[1,:] = (input[1,:] - 116.28) / 57.12
input[2,:] = (input[2,:] - 103.53) / 57.375
h_input = input.flatten()
with engine.create_execution_context() as context:
cuda.memcpy_htod_async(d_input, h_input, stream)
context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)
cuda.memcpy_dtoh_async(h_output0, d_output0, stream)
cuda.memcpy_dtoh_async(h_output1, d_output1, stream)
stream.synchronize()
batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))
batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))
mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]
#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]
mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))
for i in range(mask_pred_results.shape[0]):
mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
mask_cls = batch_cls_logits[0]
#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)
scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)
labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)
#mask_pred = mask_pred.sigmoid()
mask_pred = 1/ (1 + np.exp(-mask_pred))
#keep = labels.ne(num_classes) & (scores > object_mask_thr)
keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
cur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)
cur_mask_ids = cur_prob_masks.argmax(0)
instance_id = 1
for k in range(cur_classes.shape[0]):
pred_class = int(cur_classes[k].item())
isthing = pred_class < num_things_classes
mask = cur_mask_ids == k
mask_area = mask.sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
if mask_area > 0 and original_area > 0:
if mask_area / original_area < iou_thr:
continue
if not isthing:
panoptic_seg[mask] = pred_class
else:
panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)
instance_id += 1
ids = np.unique(panoptic_seg)[::-1]
ids = ids[ids != num_classes]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (panoptic_seg[None] == ids[:, None, None])
max_label = int(max(labels) if len(labels) > 0 else 0)
colors = [palette[label] for label in labels]
draw_binary_masks(image, segms, colors)
mask2former
import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda
num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):
palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))
def resize_keep_ratio(image, img_scale):
h, w = image.shape[0], image.shape[1]
max_long_edge = max(img_scale)
max_short_edge = min(img_scale)
scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))
scale_w = int(w * float(scale_factor ) + 0.5)
scale_h = int(h * float(scale_factor ) + 0.5)
img_new = cv2.resize(image, (scale_w, scale_h))
return img_new
def draw_binary_masks(img, binary_masks, colors, alphas=0.8):
binary_masks = binary_masks.astype('uint8') * 255
binary_mask_len = binary_masks.shape[0]
alphas = [alphas] * binary_mask_len
for binary_mask, color, alpha in zip(binary_masks, colors, alphas):
binary_mask_complement = cv2.bitwise_not(binary_mask)
rgb = np.zeros_like(img)
rgb[...] = color
rgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)
img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)
rgb = rgb + img_complement
img = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)
cv2.imwrite("output.jpg", img)
if __name__=="__main__":
logger = trt.Logger(trt.Logger.WARNING)
ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')
with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/mask2former/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)
d_input = cuda.mem_alloc(h_input.nbytes)
d_output0 = cuda.mem_alloc(h_output0.nbytes)
d_output1 = cuda.mem_alloc(h_output1.nbytes)
stream = cuda.Stream()
image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')
image_resize = resize_keep_ratio(image, resize_shape)
scale = (image.shape[0]/image_resize.shape[0], image.shape[1]/image_resize.shape[1])
pad_shape = (np.ceil(image_resize.shape[1]/32)*32, np.ceil(image_resize.shape[0]/32)*32)
pad_x, pad_y = int(pad_shape[0]-image_resize.shape[1]), int(pad_shape[1]-image_resize.shape[0])
image_pad = cv2.copyMakeBorder(image_resize, 0, pad_y, 0, pad_x, cv2.BORDER_CONSTANT, value=0)
input = image_pad[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHW
input[0,:] = (input[0,:] - 123.675) / 58.395
input[1,:] = (input[1,:] - 116.28) / 57.12
input[2,:] = (input[2,:] - 103.53) / 57.375
h_input = input.flatten()
with engine.create_execution_context() as context:
cuda.memcpy_htod_async(d_input, h_input, stream)
context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)
cuda.memcpy_dtoh_async(h_output0, d_output0, stream)
cuda.memcpy_dtoh_async(h_output1, d_output1, stream)
stream.synchronize()
batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))
batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))
mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]
#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]
mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))
for i in range(mask_pred_results.shape[0]):
mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)
mask_cls = batch_cls_logits[0]
#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)
scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)
labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)
#mask_pred = mask_pred.sigmoid()
mask_pred = 1/ (1 + np.exp(-mask_pred))
#keep = labels.ne(num_classes) & (scores > object_mask_thr)
keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
cur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)
cur_mask_ids = cur_prob_masks.argmax(0)
instance_id = 1
for k in range(cur_classes.shape[0]):
pred_class = int(cur_classes[k].item())
isthing = pred_class < num_things_classes
mask = cur_mask_ids == k
mask_area = mask.sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
if mask_area > 0 and original_area > 0:
if mask_area / original_area < iou_thr:
continue
if not isthing:
panoptic_seg[mask] = pred_class
else:
panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)
instance_id += 1
ids = np.unique(panoptic_seg)[::-1]
ids = ids[ids != num_classes]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (panoptic_seg[None] == ids[:, None, None])
max_label = int(max(labels) if len(labels) > 0 else 0)
colors = [palette[label] for label in labels]
draw_binary_masks(image, segms, colors)
推理结果: