连通域的面积和周长计算实现

这篇博客介绍了如何使用OpenCV库进行图像处理,特别是针对二值图像的连通域分析。通过示例代码展示了如何计算所有连通域的总面积、每个连通域的面积以及所有连通域的周长和,进一步提供了每个连通域的周长计算方法。这些方法对于图像分割、目标检测等应用具有重要意义。
摘要由CSDN通过智能技术生成

测试图片为一张640 * 480的全黑图片,中间有两个大小分别为100 * 100和150 * 150的白色方块。
在这里插入图片描述
该测试图片可以通过下面的程序生成:

#include<iostream>
#include<opencv2/opencv.hpp>


int main()
{
	cv::Mat img = cv::Mat::zeros(cv::Size(640, 480), CV_8U);
	cv::Mat rect1 = img(cv::Rect(100, 100, 100, 100));
	for (size_t i = 0; i < rect1.rows; i++)
	{
		for (size_t j = 0; j < rect1.cols; j++)
		{
			rect1.at<uchar>(i, j) = 255;
		}
	}
	cv::Mat rect2 = img(cv::Rect(300, 300, 150, 150));
	for (size_t i = 0; i < rect2.rows; i++)
	{
		for (size_t j = 0; j < rect2.cols; j++)
		{
			rect2.at<uchar>(i, j) = 255;
		}
	}
	cv::imwrite("1.png", img);
	return 0;
}

连通域面积计算

所有连通域面积和计算:(输出结果为32500)

#include<iostream>
#include<opencv2/opencv.hpp>


void dfs(cv::Mat& src, cv::Mat& dst, int i, int j, int& area)
{
	if (i >= 0 && i < src.rows && j >= 0 && j < src.cols && src.at<uchar>(i, j) != 0 && dst.at<uchar>(i, j) == 0)
	{
		dst.at<uchar>(i, j) = 255;
		dfs(src, dst, i - 1, j, area);
		dfs(src, dst, i + 1, j, area);
		dfs(src, dst, i, j - 1, area);
		dfs(src, dst, i, j + 1, area);
		++area;
	}
}


void getarea(cv::Mat& src)
{
	cv::Mat dst = cv::Mat::zeros(src.size(), CV_8U);
	int area = 0;
	for (int i = 0; i < src.rows; ++i)
	{
		for (int j = 0; j < src.cols; ++j)
		{
			if (src.at<uchar>(i, j) != 0 && dst.at<uchar>(i, j) == 0)
				dfs(src, dst, i, j, area);
		}
	}
	std::cout << area << std::endl;
}


int main()
{
	cv::Mat src = cv::imread("1.png", 0);
	getarea(src);
	return 0;
}

每个连通域面积计算:(输出结果为10000 22500)

#include<iostream>
#include<opencv2/opencv.hpp>


void dfs(cv::Mat& src, cv::Mat& dst, int i, int j, int& area, int num)
{
	if (i >= 0 && i < src.rows && j >= 0 && j < src.cols && src.at<uchar>(i, j) != 0 && dst.at<uchar>(i, j) == 0)
	{
		dst.at<uchar>(i, j) = 255;
		dfs(src, dst, i - 1, j, area, num);
		dfs(src, dst, i + 1, j, area, num);
		dfs(src, dst, i, j - 1, area, num);
		dfs(src, dst, i, j + 1, area, num);
		++area;
	}
}


void getareas(cv::Mat& src)
{
	int num = 0;
	cv::Mat dst = cv::Mat::zeros(src.size(), CV_8U);
	for (int i = 0; i < src.rows; ++i)
	{
		for (int j = 0; j < src.cols; ++j)
		{
			if (src.at<uchar>(i, j) != 0 && dst.at<uchar>(i, j) == 0)
			{
				num++;
				int area = 0;
				dfs(src, dst, i, j, area, num);
				std::cout << area << std::endl;
			}
		}
	}
}


int main()
{
	cv::Mat src = cv::imread("1.png", 0);
	getareas(src);
	return 0;
}

连通域周长计算

所有连通域周长和计算:(输出结果为1000)

#include<iostream>
#include<opencv2/opencv.hpp>


void dfs(cv::Mat& src, cv::Mat& dst, int i, int j, int& len)
{
	if (i < 0 || i >= src.rows || j < 0 || j >= src.cols || src.at<uchar>(i, j) == 0)
	{
		len++;
		return;
	}

	if (dst.at<uchar>(i, j) == 255)
		return;

	dst.at<uchar>(i, j) = 255;

	dfs(src, dst, i - 1, j, len);
	dfs(src, dst, i + 1, j, len);
	dfs(src, dst, i, j - 1, len);
	dfs(src, dst, i, j + 1, len);
}

void getlen(cv::Mat& src)
{
	int len = 0;
	cv::Mat dst = cv::Mat::zeros(src.size(), CV_8U);
	for (int i = 0; i < src.rows; ++i)
	{
		for (int j = 0; j < src.cols; ++j)
		{
			if (src.at<uchar>(i, j) != 0)
			{
				dfs(src, dst, i, j, len);
			}
		}
	}
	std::cout << len << std::endl;
}


int main()
{
	cv::Mat src = cv::imread("1.png", 0);
	getlen(src);
	return 0;
}

或者:

#include<iostream>
#include<opencv2/opencv.hpp>


void getlen(cv::Mat& src)
{
	int len = 0;
	for (int i = 0; i < src.rows; ++i)
	{
		for (int j = 0; j < src.cols; ++j)
		{
			if (src.at<uchar>(i, j) != 0)
			{
				len += 4;
				if (i > 0 && src.at<uchar>(i - 1, j) != 0)    len -= 2;
				if (j > 0 && src.at<uchar>(i, j - 1) != 0)    len -= 2;
			}
		}
	}
	std::cout << len << std::endl;
}


int main()
{
	cv::Mat src = cv::imread("1.png", 0);
	getlen(src);
	return 0;
}

每个连通域周长计算:(输出结果为400 600)

#include<iostream>
#include<opencv2/opencv.hpp>


void dfs(cv::Mat & src, cv::Mat & dst, int i, int j, int& len, int num)
{
	if (i < 0 || i >= src.rows || j < 0 || j >= src.cols || src.at<uchar>(i, j) == 0)
	{
		len++;
		return;
	}

	if (dst.at<uchar>(i, j) == 255)
		return;

	dst.at<uchar>(i, j) = 255;

	dfs(src, dst, i - 1, j, len, num);
	dfs(src, dst, i + 1, j, len, num);
	dfs(src, dst, i, j - 1, len, num);
	dfs(src, dst, i, j + 1, len, num);
}


void getlens(cv::Mat & src)
{
	int num = 0;
	cv::Mat dst = cv::Mat::zeros(src.size(), CV_8U);
	for (int i = 0; i < src.rows; ++i)
	{
		for (int j = 0; j < src.cols; ++j)
		{
			if (src.at<uchar>(i, j) != 0 && dst.at<uchar>(i, j) == 0)
			{
				num++;
				int len = 0;
				dfs(src, dst, i, j, len, num);
				std::cout << len << std::endl;
			}
		}
	}
}


int main()
{
	cv::Mat src = cv::imread("1.png", 0);
	getlens(src);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

给算法爸爸上香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值