SIFT与HOG特征提取

SIFT和HOG是图像处理中的两种关键特征提取方法,基于梯度方向直方图。SIFT通过16X16区域的4X4单元计算128维向量,对灰度变化和小形变具有不变性。HOG则在6X6单元内计算9个区间直方图,对局部对比度变化不敏感,适用于行人检测。
摘要由CSDN通过智能技术生成

SIFT :scale invariant feature transform

HOG:histogram of oriented gradients

这两种方法都是基于图像中梯度的方向直方图的特征提取方法。

1. SIFT 特征 

    实现方法:

    SIFT 特征通常与使用SIFT检测器得到的感兴趣点一起使用。这些感兴趣点与一个特定的方向和尺度(scale)相关联。通常是在对一个图像中的方形区域通过相应的方向和尺度变换后,再计算该区域的SIFT特征。

    首先计算梯度方向和幅值(使用Canny边缘算子在感兴趣点的周围16X16像素点区域计算)。对得到的方向在0-360度范围内分成八个区间,然后将16X16大小的区域分成不重合的4X4个单元,每个单元内计算梯度方向直方图(八个区间)。一共得到16个单元的直方图,将这些直方图接连起来得到长度为128X1的向量,然后将该向量归一化。

    特点:

  (1)由于使用梯度进行计算,该特征计算方法对恒定的灰度变化具有不变性。

  (2)最后一步中的归一化过程使该特征对图像对比度具有一定不变性。

  (3)由于在4X4的单元内计算直方图,该特征不会受到一些小的形变的影响。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值