D6-SIFT & HOG

本文详细介绍了SIFT(尺度不变特征转换)和HOG(方向梯度直方图)两种图像处理领域的特征描述子。SIFT具有尺度不变性,可用于图像中关键点的检测与匹配。HOG特征通过计算图像局部区域的梯度方向直方图,适用于物体检测,尤其在行人检测中表现出色。两者在计算机视觉和图像识别中有着广泛应用。
摘要由CSDN通过智能技术生成

SIFT & HOG

SIFT

SIFT,即尺度不变特征转换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述子。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。 该方法于1999年由David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International journal of computer vision(IJCV) 。

SIFT特征检测:

  1. 尺度空间的极值检测 搜索所有尺度空间上的图像,通过高斯微分函数来识别潜在的对尺度和选择不变的兴趣点。

  2. 关键点定位 在兴趣点位置上,确定关键点的位置和尺度。

  3. 方向确定 基于图像局部的梯度方向,给每个关键点分配方向。

  4. 关键点描述 在每个关键点的领域内测量图像局部的梯度,最终用一个特征向量来表达。

SIFT特征匹配:

SIFT特征匹配主要包括2个阶段:

  • 第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。
  • 第二阶段:SIFT特征向量的匹配。

SIFT特征的生成一般包括以下几个步骤:

  1. 构建尺度空间,检测极值点,获得尺度不变性。

  2. 特征点过滤并进行精确定位。

  3. 为特征点分配方向值。

  4. 生成特征描述子。

HOG

HOG,方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征。

  1. 主要思想:在一副图像中,局部目标的表象和形状能够被梯度或边缘的方向密度分布很好地描述。
  2. 本质为:梯度的统计信息,而梯度主要存在于边缘的地方。

Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。

  1. 实现方法:首先将图像分成小的连通区域,这些连通区域被叫做细胞单元。然后采集细胞单元中各像素点的梯度的或边缘的方向直方图。最后把这些直方图组合起来,就可以构成特征描述符。

  2. 性能提高:将这些局部直方图在图像的更大的范围内(叫做区间)进行对比度归一化,可以提高该算法的性能,所采用的方法是:先计算各直方图在这个区间中的密度,然后根据这个密度对区间中的各个细胞单元做归一化。通过这个归一化后,能对光照变化和阴影获得更好的效果。

HOG特征的优点:

  • 首先,由于HOG是 在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性,这两种形变只会出现在更大的空间领域上。
  • 其次,在粗的空域抽样、精细 的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响 检测效果。
    因此HOG特征是特别适合于做图像中的人体检测的 。

HOG特征的具体提取步骤:

  1. 色彩和伽马归一化
  2. 计算图像梯度
  3. 构建方向的直方图
  4. 将细胞单元组合成大的区间
  5. 收集HOG特征

R-HOG与C-HOG:

  • R- HOG 跟SIFT描述器看起来很相似,但他们的不同之处是:R-HOG是在单一尺度下、密集的网格内、没有对方向排序的情况下被计算出来;而SIFT描述器是在多尺度下、稀疏的图像关键点上、对方向排序的情况下被计算出来。另外,R-HOG是各区间被组合起来用于对空域信息进行编码,而SIFT的各描述器是单独使用的。
  • C- HOG区间有两种不同的形式,它们的区别在于:一个的中心细胞是完整的,一个的中心细胞是被分割的。经研究发现 C-HOG的这两种形式都能取得相同的效果。C-HOG区间可以用四个参数来表征:角度盒子的个数、半径盒子个数、中心盒子的半径、半径的伸展因子。通过实验,对于行人检测,最佳的参数设置为:4个角度盒子、2个半径盒子、中心盒子半径为4个像素、伸展因子为2。此外,对于R- HOG,中间加一个高斯空域窗口是非常有必要的,但对于C-HOG,这显得没有必要。C-HOG看起来很像基于形状上下文的方法,但不同之处是:C-HOG的区间中包含的细胞单元有多个方向通道,而基于形状上下文的方法仅仅只用到了一个单一的边缘存在数。

HOG特征的总结:

  • Dalal提出的HOG特征提取的过程:把样本图像分割为若干个像素的单元,把梯度方向平均划分为多个区间,在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个多维的特征向量,每相邻的单元构成一个区间,把一个区间内的特征向量联起来得到多维的特征向量,用区间对样本图像进行扫描,扫描步长为一个单元。最后将所有块的特征串联起来,就得到了人体的特征。至今虽然有很多行人检测算法,但基本都是以HOG+SVM的思路为主。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吕同学吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值