model.eval()和with torch.no_grad()对梯度计算的影响

import torch
import torch.nn as nn
class model(nn.Module):
    def __init__(self, b):
        super(model, self).__init__()
        self.b = b
    def forward(self, x):
        y = torch.pow(x, 2)
        return y

x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True)
b = torch.tensor([1.0, 1.0, 0.0], requires_grad=True)
model = model(b)

model.eval()                        # model.eval()不影响梯度的计算
# with torch.no_grad():             # with torch.no_grad()会使得y的梯度计算参数为False
y = model(x)
print(y.requires_grad)

y.backward(torch.ones_like(x))      # pytorch无法进行tensor对tensor的求导,因此此处需要添加一个参数,得到一个标量,通过标量对tensor的求导,来计算想要的结果。

print(x.grad)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值