干扰管理
文章平均质量分 73
本专栏主要记录干扰管理方向的学习与思考
@白圭
积沙成塔
展开
-
干扰管理学习日志8-------多用户联合_资源卸载_功率分配_计算资源分配
本文作者提出了一种启发式卸载决策算法(HODA),用于满足可能面对的计算密集型任务。整个系统包含三个模块,分别是信道容量优化(通信资源)、云基站算力分配优化(计算资源)以及卸载决策优化,以提高整个通信系统的效用,减少任务完成时间、降低移动设备能耗。原创 2022-12-13 19:38:36 · 517 阅读 · 2 评论 -
干扰管理学习日志9-------强化学习_联邦学习_功率分配
本篇文章作者通过强化、联邦学习方法,联合优化小区功率分配,以达到更高的通信速率和更强的泛化性能。具体而言,对于不同场景下的功率分配任务,作者首先使用强化学习方法改进功率分配方案,提升信道容量。之后,又通过联邦学习将个模型参数进行融合,以达到更好的泛化性能,使得全局模型在不同场景中都有着较为优异的收敛速度。原创 2022-12-22 00:13:50 · 843 阅读 · 7 评论 -
干扰管理学习日志5--------干扰管理综述(2019)
本篇综述的发表时间为2019年,主要讲述了近年来干扰管理问题的研究和发展。具体而言,本文主要从小区间干扰(ICI)、异构网络(HetNets)、端到端通信(D2D)、多点协调网络(CoMP)与协调调度(Cs)四个方面阐述了当前的研究成果与存在的挑战,最后阐述了3GPP对未来干扰管理方法提出的可行解决方案。原创 2022-10-26 19:43:09 · 569 阅读 · 0 评论 -
干扰管理学习日志6--------干扰管理综述(2021)
本篇综述的发表时间为2019年,主要讲述了近年来干扰管理问题的研究和发展。具体而言,本文主要从异构网络(HetNets)、中继节点(RN)、端到端通信(D2D)与物联网(loT)四个方面阐述了当前的研究成果与存在的挑战,最后阐述了3GPP对未来干扰管理方法提出的可行解决方案。原创 2022-11-07 20:20:24 · 1149 阅读 · 0 评论 -
干扰管理学习日志2-------注水算法
注水算法是根据某种准则,并根据信道状况对发送功率进行自适应分配,通常是信道状况好的时刻,多分配功率,信道差的时候,少分配功率,从而最大化传输速率。实现功率的“注水”分配,发送端必须知道CSI。原创 2022-10-16 21:12:46 · 932 阅读 · 0 评论 -
干扰管理学习日志3-------最大最小公平性问题
最大最小公平性问题是一种功率分配方案,其含义为由低到高满足用户的功率需求,当遇到不能满足需求的第一个用户时,将功率均等分配给剩下的所有用户。4.直至不能满足某个用户功率需求,剩余功率为。1.将用户的资源需求按升序排列。,每个用户所需要的资源为。原创 2022-10-17 18:50:38 · 207 阅读 · 0 评论 -
干扰管理学习日志1-------KKT条件
用于求解带有不等式约束的问题。有下方两个约束条件(包含等式约束与不等式约束)对此,我们建立拉格朗日函数L。求解非线性规划问题中,原创 2022-10-16 19:30:20 · 125 阅读 · 0 评论 -
干扰管理学习日志7--------6g完全解耦的RAN架构----《A Fully-Decoupled RAN Architecture...》
本文从神经元的物理、化学信息传递为基础,对6G网络体系架构提出了独特的见解,包括完全解耦的RAN架构、Cybertwin辅助传输服务层与FD-RAN中的弹性资源协作,下文将详细展开介绍这三种设想。本文从神经元的信号传输出发,对于6G网络的架构提出了独特的见解,模型效果仍需在仿真中模拟。原创 2022-11-08 18:29:25 · 443 阅读 · 0 评论 -
干扰管理学习日志4-------信道估计方法 LS(最小二乘)、MMSE(最小均方误差)
信道估计,就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程。如果信道是线性的话,那么信道估计就是对系统冲激响应进行估计。需强调的是信道估计是信道对输入信号影响的一种数学表示,而“好”的信道估计则是使得某种估计误差最小化的估计算法。本文主要讲述非盲信道估计中的LS估计和MMSE估计。LS全称为,即估计的信道参数与实际信道参数的差,进行平方求和后得到的误差累积最小。MMSE估计是LS估计的改进,在LS估计的最终结果的基础上乘以加权矩阵,使之与实际信道参数更为接近。原创 2022-10-17 19:39:36 · 8293 阅读 · 0 评论