Delve into Fast R-CNN Code. 能够运行Demo,然后看一下代码结构

Delve into Fast R-CNN Code. 能够运行Demo,然后看一下代码结构

标签(空格分隔): vision


_init_paths.py

demo.py首先import了这个模块,主要就是把路径设置好。

# Add caffe to PYTHONPATH
caffe_path = osp.join(this_dir, '..', 'caffe-fast-rcnn', 'python')
add_path(caffe_path)

# Add lib to PYTHONPATH
lib_path = osp.join(this_dir, '..', 'lib')
add_path(lib_path)

demo.py

这个演示的例子程序。对两个图片进行Object Detection。一个检测Car,一个检测是否有显示器。代码都非常好懂。

  1. 找一个其他的图片试试?
  2. 任意找一个图片试试?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值