Fast-R-CNN_VOC_example

用FR-CNN来运行一个图片中目标检测的例子

安装了FR-CNN以后,运行demo.py没有问题了。
找一个图片来自己测试一下。

当然现在还只能使用VOC2007(VOC2012)的图片,因为只有这两个数据集,作者提供了预先计算好的Roi。

准备数据

  1. 从VOC2007中找一个图片。从~/fast-rcnn/VOCdevkit/VOC2007/JPEGImages中选择一张图片,拷贝到 ~/fast-rcnn/tools目录下。
    例如我想要检测汽车,所以选择002779.png这个图片。

  2. 得到Seletive Search的roi proposals。
    用matlab的import data,加载~/fast-rcnn/data/selective_search_data/voc_2007_train.mat。
    这个数据集中包括两个cell变量,一个images,一个boxes。
    images中存储了图片名称以及其在boxes中对应的索引号。
    boxes中存储了每个图片的boxes(roi proposals)
    重命名boxes为~all_boxes~,因为后面需要用boxes这个名字。
    从images中找到图片对应的索引号,例如002779.png的索引号是691.

~matlab
boxes=uint16(cell2mat(all_boxes(691)));
~

然后把boxes变量存储为~/fast-rcnn/data/demo/002779_boxes.mat

修改demo.py

~python
print '
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~’
print ‘Demo for data/demo/002779.jpg’
demo(net, ‘002779’, (‘car’,))
~~~

正面的车子,效果似乎不是太好。
http://imageshack.com/a/img673/5262/l5j4aZ.jpg

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值