2.6 素性测试

思维导图:

 

2.6 素性测试

概述
  • 密码算法通常需要大的素数,但确定大数是否为素数是个难题。
  • 素性测试算法能高概率判定一个数是否为素数,但不是绝对确定。

2.6.1 Miller-Rabin 素性测试

背景知识
  • 奇数的表示:�−1=2�⋅�n−1=2k⋅q,其中 �>0k>0,�q 是奇数。
  • 二进制表示:不断右移 (�−1)(n−1) 直到最低位为 1。
素数的两个性质
  1. 若 �p 是素数,�a 是小于 �p 的正整数,则 �2mod  �=1a2modp=1 当且仅当 �mod  �=±1amodp=±1。
  2. 若 �p 是素数,且 �−1=2�⋅�p−1=2k⋅q,对于 1<�<�−11<a<p−1,必存在 �j 使得 �2�⋅�≡−1mod  �a2j⋅q≡−1modp 或者 ��≡1mod  �aq≡1modp。
算法原理
  • 若 �n 为素数,��−1≡1mod  �an−1≡1modn(费马小定理)。
  • 数列 ��,�2�,�4�,…,�2�⋅�mod  �aq,a2q,a4q,…,a2k⋅qmodn 必有一项为 11 或者 �−1n−1。
算法步骤
  1. 写出 �−1n−1 为 2�⋅�2k⋅q 形式,其中 �q 是奇数。
  2. 随机选择 �a,1<�<�−11<a<n−1。
  3. 如果 ��≡1mod  �aq≡1modn 或 �2�⋅�≡−1mod  �a2j⋅q≡−1modn 对于任意 0≤�≤�0≤j≤k 成立,则 �n 可能是素数(返回“不确定”)。
  4. 如果以上条件均不满足,则 �n 是合数。
示例
  • �=29n=29,�−1=28n−1=28,�=10a=10,测试结果是“不确定”。
  • �=221n=221,�−1=220n−1=220,�=5a=5,测试结果是“合数”。
提高可信度
  • 重复使用 Miller-Rabin 算法,每次选择不同的 �a。
  • 如果 �t 次测试都返回“不确定”,则 �n 为素数的概率大大增加。
素数分布讨论
  • 素数分布的讨论有助于理解素性测试的必要性和应用背景。
笔记要点
  • 理解素数与合数的区别及其对加密算法的重要性。
  • 掌握 Miller-Rabin 测试的算法流程和逻辑。
  • 知道通过多次测试提高判断素数概率的方法。
  • 了解素数的分布可以帮助更好地选择和测试大素数。

我的理解:

Miller-Rabin 素性测试算法是一种概率性质的算法,用于判断一个给定的大整数是否是素数。与其他素性测试方法相比,它不会给出绝对的判断,而是以很高的概率保证结果的正确性。这里的“概率性”指的是对于合数,算法有很大的概率会正确地识别它不是素数;而对于素数,算法总是能识别它是素数。下面我将逐步解释这一算法的基本概念:

  1. 奇数的表示: 算法考虑的是大于2的奇数n,因为偶数显然不是素数。任何奇数n都可以表示成 �−1=2�⋅�n−1=2k⋅q 的形式,其中q是奇数。

  2. 模运算的性质: 对于素数p和小于p的任意正整数a,如果 �2mod  �=1a2modp=1,那么根据模运算的性质,只有两种可能:要么 �mod  �=1amodp=1,要么 �mod  �=�−1amodp=p−1。

  3. Miller-Rabin 测试的核心: 测试的核心思想是:如果n是素数,那么对于任意的a(1 < a < n-1),序列 ��mod  �,�2�mod  �,…,�2�−1�mod  �aqmodn,a2qmodn,…,a2k−1qmodn 中至少存在一个数等于1,或者其中某个数的下一个数等于n-1。

  4. 算法流程:

    • 将n-1分解为 2�⋅�2k⋅q,q为奇数。
    • 随机选取一个整数a(1 < a < n-1)。
    • 计算 ��mod  �aqmodn,如果结果为1,则n可能是素数(不确定)。
    • 进行k次测试,对于每次i,计算 �2��mod  �a2iqmodn,如果某次结果为n-1,则n可能是素数(不确定)。
    • 如果上面的测试都没通过,n一定不是素数。
  5. “不确定”和“合数”: 如果测试结果是“不确定”,那么n可能是素数;如果测试结果是“合数”,那么n一定不是素数。不过,即使多次测试都是“不确定”,也不能完全保证n是素数,但是错误的可能性随着测试次数的增加而减少。

  6. 提高可信度: 通过多次执行这个测试,每次都随机选择不同的a,可以显著提高判断的可信度。如果对一个合数进行t次Miller-Rabin测试,所有测试都返回“不确定”的概率小于 1/4�1/4t。因此,通过足够多次的测试,我们可以以非常高的可信度确定一个数是否为素数。

综上所述,Miller-Rabin 素性测试是一种有效的算法,它适用于那些过大而不能用传统方法(如试除法)来快速确定其素性的整数。尽管结果是概率性的,但通过足够多的测试,我们可以对一个数是否是素数有非常强的信念。

学到了什么?

Miller-Rabin素性测试算法体现了数学中一些重要的思想、方法和处理技巧:

  1. 概率方法:Miller-Rabin算法是一个概率性算法,它代表了数学中一种非确定性思维方式。这种方式承认我们有时无法得到绝对的答案,但可以通过概率论的方法得到一个“足够好”的答案。在很多现实问题中,尤其是在计算机科学和密码学领域,概率方法能够提供高效且实用的解决方案。

  2. 模运算和数论:算法基于模运算(modular arithmetic)和数论的核心概念。它使用到了费马小定理和欧拉定理等,这些都是数论中的基石。这些理论不仅在纯数学研究中非常重要,在加密技术等应用领域也非常关键。

  3. 算法的迭代与折半:算法中将n-1分解为2��2kq的步骤,使用了迭代和折半的思想,这是计算机科学中常用的提高效率的方法。通过逐步缩小问题的规模,可以有效地减少计算量。

  4. 证据权重的累积:在多次测试中,尽管每次测试不能完全确定n是否为素数,但每次“可能是素数”的结果都会增加我们相信n是素数的信心。这类似于科学实验中证据的累积过程。

  5. 随机化算法:Miller-Rabin算法是一个随机化算法,因为它依赖于随机选择基数a。随机化是一种处理不确定性和复杂性的有效工具,它在算法设计中的应用越来越广泛。

  6. 抽象化和泛化:Miller-Rabin算法不依赖于对特定数字的分析,而是使用抽象化的数学概念来处理所有可能的情况。这种泛化是数学中一个非常强大的特点,可以让算法和理论跨越具体问题,应用到广泛的领域。

  7. 计算复杂性的权衡:在实际应用中,Miller-Rabin算法展示了时间复杂度和结果可靠性之间的权衡。通过调整测试次数,可以在算法运行时间和结果确定性之间做出合适的选择。

  8. 算法优化:在Miller-Rabin算法的多次迭代中,通过停止某些路径的进一步测试(如果找到了明确的“非素数”证据),体现了算法优化的思想,这是提高算法效率的一种方法。

总的来说,Miller-Rabin素性测试算法不仅是一个具体的数学工具,也是一系列数学思维方法和处理技巧的集合体,这些方法和技巧在各个领域都有广泛的应用价值。

证明中能学到?

Miller-Rabin素性测试算法的证明蕴含了深刻的数学思想和方法,它们包括:

  1. 反证法:在证明Miller-Rabin算法的正确性时,我们通常使用反证法来展示如果一个数通过了测试,那么它是合数的概率是有限制的。反证法是一种通过假设某个命题的否定为真,并由此推导出矛盾来证明原命题为真的强大技巧。

  2. 数论基础:Miller-Rabin的证明深入地使用了数论中的核心概念,如费马小定理和欧拉定理,这些都指出了素数的特定性质。了解和应用这些定理是理解算法为何有效的关键。

  3. 随机性和非确定性:证明中要说明的是,算法在随机选择基数a的情况下,错误地将合数判断为素数的概率是有限的。这涉及到计算随机事件的概率,是概率论与数论结合的一个例子。

  4. 平方与乘法规则:证明中展示了对模n的乘法群的理解,尤其是平方后等于1的元素只能是1或-1(模n)。这是群论中的一个概念,它在算法的证明中起到了关键作用。

  5. 组合数学:在考虑所有可能的基数a时,实际上是在使用组合数学的思想。证明中我们要估计在所有可能的基数中,有多少比例的基数会使算法失败。

  6. 复杂性分析:证明算法时,我们还会接触到计算复杂性的概念,了解算法的效率以及如何评估这种效率。Miller-Rabin算法证明了在多项式时间内就能得到一个高概率的结果。

  7. 证明复杂性与实用性的平衡:Miller-Rabin算法在实践中的可行性来源于它对证明的简化和优化。虽然严格数学证明可能涉及到复杂的理论,但在应用时我们会寻找平衡点,以保持算法的实际可用性。

  8. 构造性证明与非构造性证明:在许多情况下,Miller-Rabin算法提供了非构造性的证明,它告诉我们一个数是合数,但不提供分解。在数学中,区分一个证明是否提供了构造性的解决方案通常很重要。

通过深入理解Miller-Rabin素性测试算法的证明,可以学习到如何将概率论、数论、群论等数学分支的概念和方法结合起来,处理具体的数学问题和计算问题。这些数学思想和技巧是解决现代科学和工程问题的基础。

 

2.6.2 一个确定性的素性判定算法

  • 背景: 在2002年之前,所有已知的大数素性判定方法,包括广泛使用的Miller-Rabin算法,都只能提供概率性的结果。

  • AKS算法: 2002年,Agrawal、Kayal和Saxena提出了AKS算法。这是第一个已知的针对大数素性有效的确定性算法。

  • 性能: AKS算法的效率没有Miller-Rabin算法高,计算复杂度较大,因此在实际应用中没有取代基于概率的算法。

  • 应用: AKS算法在理论上极其重要,因为它为确定性地验证素数提供了方法,尽管其实用性受限。

2.6.3 素数的分布

  • 素数定理: 素数定理给出了素数分布的大致规律,指出在n附近,平均每ln(n)个整数中大约有一个素数。

  • 测试次数估计: 在实施Miller-Rabin测试或其他素数测试时,平均需要测试约ln(n)个整数来找到一个素数。由于可以排除所有偶数,实际需要测试的次数约为0.5×ln(n)。

  • 实例: 例如,找到一个大约为2200的素数,平均需要进行大约0.5×ln(2200) ≈ 69次测试。

  • 素数分布不均: 素数的实际分布可能非常不均匀,有些地方素数可能非常密集,而在其他地方可能非常稀疏。

  • 案例分析: 两个相邻奇数1000000000061和1000000000063都是素数的例子显示了密集的情况;相反,从1001!+2到1001!+1001的连续1000个整数都是合数的情况,则展示了稀疏的情况。

总结:

重点:
  1. Miller-Rabin 素性测试:概率性算法,能够快速检验一个大数是否为素数,但不能提供确定性证明。
  2. AKS 素性测试:在2002年提出的第一个多项式时间内的确定性素性检验算法,理论上重要但实际应用有限。
  3. 素数定理:提供了一个关于素数分布的近似规律,即在较大数n的附近,大约每ln(n)个自然数中就有一个素数。
难点:
  1. 理解非确定性与确定性算法的差异:需要理解Miller-Rabin算法如何通过随机化测试给出素数的概率性证明,以及AKS算法是如何确保测试结果是确定性的。
  2. 算法的效率:AKS算法虽然是确定性的,但其效率远低于Miller-Rabin,因此理解为何实际中仍然偏好使用后者是重要的。
  3. 素数分布的非均匀性:素数定理提供了平均分布的规律,但实际上素数在数轴上的分布是不均匀的。
易错点:
  1. 过分依赖素数定理的均匀分布假设:虽然素数定理提供了平均情况,实际上素数在数轴上可能会出现密集或稀疏的区域。
  2. 误解Miller-Rabin测试的结果:可能会错误地将Miller-Rabin测试的概率结果解释为绝对的,不理解存在错误概率。
  3. 算法实现的细节:在实现Miller-Rabin和AKS算法时,可能会忽略或错误实现算法中的关键步骤,导致结果不准确。

在学习素性测试的章节时,理解上述的重点和难点,并注意易错点,可以帮助更好地掌握素数测试的理论和实践。

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值