第一章 命题逻辑
1-1 命题及其表示法
在数理逻辑中,为了表达概念,陈述理论和规则,常常需要应用语言进行描述。但是,日常使用的自然语言往往叙述不够确切,易产生二义性,因此需要引入一种目标语言。这种目标语言和一些公式符号形成了数理逻辑的形式符号体系。
目标语言和命题
所谓目标语言就是表达判断的一些语言的汇集,而判断就是对事物肯定或否定的一种思维形式。能表达判断的语言是陈述句,称作命题。一个命题总是具有一个“值”,称为真值。真值只有“真”和“假”两种,记作True(真)和False(假),分别用符号T和F表示。只有具有确定真值的陈述句才是命题,一切没有判断内容的句子,如感叹句、疑问句、祈使句等,都不能作为命题。
命题的类型
命题有两种类型:
- 原子命题:不能分解为更简单的陈述语句。
- 复合命题:由联结词、标点符号和原子命题复合构成。
所有这些命题都应具有确定的真值。下面通过实例说明命题的概念:
- 中国人民是伟大的。
- 雪是黑的。
- 1+101=110
- 别的星球上有生物。
- 全体立正!
- 明天是否开大会?
- 天气多好啊!
- 我正在说谎。
- 我学英语,或者我学日语。
- 如果天气好,那么我去散步。
在上面的例子中:(1)、(2)、(4)、(9)、(10)是命题。其中(9)和(10)是复合命题。(4)在目前可能无法决定真值,但从事物的本质而言,它本身是有真假可言的,所以我们承认这也是一个命题。(5)、(6)、(7)都不是命题。(8)是悖论。(3)在二进制中为真,在十进制中为假,需根据上下文才能确定真值。
命题的表示法
在数理逻辑中,我们将使用大写字母A、B、…、P、Q、…或用带下标的大写字母或用数字(如A1212等)表示命题。例如:
- P: 今天下雨。
- P可表示“今天下雨”这个命题的名。
- 亦可用数字表示命题,例如1212: 今天下雨。
表示命题的符号称为命题标识符,P和1212就是标识符。一个命题标识符如表示确定的命题,就称为命题常量;如果命题标识符只表示任意命题的位置标志,就称为命题变元。因为命题变元可以表示任意命题,所以它不能确定真值,故命题变元不是命题。当命题变元P用一个特定命题取代时,P才能确定真值,这时也称对P进行指派。当命题变元表示原子命题时,该变元称为原子变元。