2.4 初等变换和初等矩阵

2.4 初等变换与初等矩阵

2.4.1 初等变换

我们先从下面实例回顾Gauss消元法的基本思想。

例2.28 利用Gauss消元法解线性方程组
  1. 交换方程组(A)第一个方程和第二个方程的位置,得方程组(B)。
  2. 交换方程组(B)的第二个方程和第三个方程的位置,得方程组(C)。
  3. 将方程组(C)第一个方程的-2倍加到第三个方程,将第一个方程加到第二个方程,得方程组(D)。
  4. 将方程组(D)的第二个方程的-4倍加到第三个方程,得方程组(E)。
  5. 对方程组(E),将第三个方程两端乘以-1,解得z=-1, y=-3, x=3。

总结上述从(A)到(E)的过程,可以发现,消元的过程实际上就是对线性方程组不断施行以下三种变化的过程:

  1. 交换某两个方程在方程组中的位置。
  2. 将其中一个方程两边乘以一个非零的数。
  3. 将一个方程的若干倍加到另一个方程的两端。

通常把以上三种变化称为线性方程组的初等变换。经初等变换后的方程组与原方程组的解集合是相同的,这种方程组称为同解方程组。

初等变换的矩阵表示

若要更加简单地表述上述过程,我们可以直接对与该方程组相应的矩阵进行类似的变换。这也就是说,对于一个矩阵,进行上述三种形式的变换是有意义的。

定义 2.9

以下三种变换称为矩阵的初等行列变换:

  1. 交换矩阵的两行(或两列)。
  2. 将矩阵的一行(或一列)乘以一个非零的数。
  3. 将矩阵的一行(或一列)的若干倍加到另一行(或一列)。

例如,通过初等行变换将矩阵化为行阶梯形矩阵:

经过一系列初等行变换后,矩阵A可化为行阶梯形矩阵。

2.4.2 初等矩阵

初等矩阵是由单位矩阵经过一次初等变换得到的矩阵。

定义 2.10

若矩阵A经过有限次初等变换能够变成矩阵B,则称矩阵A与B等价。矩阵的等价具有下列性质:

  1. 反身性:矩阵A与自身等价。
  2. 对称性:若矩阵A与B等价,则B与A也等价。
  3. 传递性:若矩阵A与B等价,B与C等价,则A与C等价。

这些性质说明,矩阵的等价是矩阵之间的一个等价关系。

初等矩阵的种类

初等矩阵有如下三种:

  1. 交换两行(或两列)得到的初等矩阵
  2. 将某行(或某列)乘以非零常数得到的初等矩阵
  3. 将某行(或某列)的若干倍加到另一行(或另一列)得到的初等矩阵
初等矩阵的逆矩阵

初等矩阵是可逆的,其逆矩阵分别为:

例2.30 计算初等矩阵的乘积

计算以下初等矩阵的乘积:

初等行变换与矩阵分解

初等变换求逆矩阵

矩阵 AAA 可逆,则其行最简形矩阵就是单位矩阵 III。通过初等行变换将 AAA 化为 III 的过程,同时将单位矩阵 III 变为 A−1A^{-1}A−1。

例2.31 利用初等行变换求逆矩阵

设矩阵 AAA 可逆,通过初等变换将 AAA 化为单位矩阵,并记录每次所作变换,再用初等矩阵的乘积表示出来。

总结

初等变换与初等矩阵在矩阵理论中具有重要的作用。通过初等行变换和初等矩阵的操作,可以简化矩阵的运算,求解线性方程组,计算矩阵的逆,及进行矩阵的等价分类等操作。理解和掌握初等变换与初等矩阵是深入学习矩阵理论和线性代数的基础。

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值