初等行变换和初等列变换是线性代数中用于变换矩阵的一组操作,它们不会改变矩阵的秩或解空间的结构。这些操作允许我们将矩阵化简成标准形式(如行最简形、Smith 标准型等),同时保持矩阵的基本性质不变。初等行变换作用于矩阵的行,而初等列变换作用于列。具体来说,它们包括以下几类操作:
1. 初等行变换(Elementary Row Operations)
对矩阵的行进行以下操作称为初等行变换:
-
交换任意两行(Row Swap): 将矩阵的两行对调。这不会改变矩阵的行秩,但改变了行的顺序。例如,交换第 1 行和第 2 行可以记作:
-
将某一行乘以一个非零常数(Scaling of a Row): 将某一行的所有元素乘以一个非零数。例如,将第 iii 行乘以一个常数 c(c≠0),可以记作:
-
用某一行的整数倍加到另一行(Row Addition/Subtraction): 用某一行的整数倍加到另一行的相应元素。例如,将第 i 行的 c 倍加到第 j 行,可以记作:
其中 c 是一个常数。
2. 初等列变换(Elementary Column Operations)
初等列变换与初等行变换类似,只是它们作用在矩阵的列上:
-
交换任意两列(Column Swap): 将矩阵的两列对调。这不会改变矩阵的列秩,但改变了列的顺序。例如,交换第 1 列和第 2 列可以记作:
-
将某一列乘以一个非零常数(Scaling of a Column): 将某一列的所有元素乘以一个非零常数。例如,将第 j 列乘以常数 c(c≠0),可以记作:
-
用某一列的整数倍加到另一列(Column Addition/Subtraction): 用某一列的整数倍加到另一列的相应元素。例如,将第 i 列的 ccc 倍加到第 j 列,可以记作:
其中 c 是一个常数。
3. 初等行变换和初等列变换的性质
-
可逆性:初等行变换和初等列变换都是可逆的操作。例如,将某一行乘以常数 c,其逆操作是将该行乘以
;行交换的逆操作是再交换回来;行加法的逆操作是再减去相应倍数的行。
-
不改变秩:无论进行多少次初等行变换或初等列变换,矩阵的秩保持不变。这对于矩阵的行简化和求解线性方程组非常有用。
-
行变换与线性方程组的等价性:通过初等行变换求解线性方程组时,原方程组与变换后的方程组等价,解的集合不变。
-
列变换与同构关系:初等列变换可以看作是对矩阵的映射结构的操作,不改变矩阵的核、秩等不变量。
4. 应用
- 高斯消元法:高斯消元法就是通过一系列初等行变换将矩阵化为行最简形,从而用于求解线性方程组。
- 求逆矩阵:利用初等行变换可以将矩阵转化为单位矩阵,同时将相应的单位矩阵转化为该矩阵的逆矩阵。
- Smith 标准型:通过初等行列变换,矩阵可以化为 Smith 标准型,从而分析矩阵的秩、结构或分类问题。