本文简单介绍一下2012年以来几篇重要的图像分类论文。
2012年AlexNet[1],证明了深层CNN网络能提升图像分类的效果。该文章使用了8层的网络,获得了2012年ImageNet数据集上图像分类的冠军。核心trick就是relu+local response normalization + overlapping pooling。为了避免过拟合使用了data augmentation + dropout。
针对单纯通过增大网络结构来提升效果的问题,2014年GoogLeNet[2]另辟蹊跷,通过从设计网络结构的角度来提升效果。论文设计了Iception这种结构来捕捉不同scale的特征,同时又通过1乘1的卷积来降维。为了缓解梯度消失的问题,又使用了auxiliary classifiers的trick。论文的主要贡献是证明了不同scale特征级联使用可以提升效果。2015年又有基于GoogLeNet的改进版[[3],主要是提出了一些网络设计准则,并根据准则改进Inception。
2015年VGG[4],进一步证明了depth在计算机视觉中的重要性。论文中使用的卷积核大小为3乘3,通过对比不同depth的网络,来证明depth大时效果更好。论文中分别对比的depth为11,13,16,19。