深度学习在图像分类等任务中的发展

本文回顾了深度学习在图像分类领域的关键进展,从2012年的AlexNet引入ReLU和数据增强,到2014年GoogLeNet的Inception结构和辅助分类器,再到2015年VGG网络验证深度的重要性,以及同年提出的高速公路网络和深度残差网络(ResNet),后者解决了深层网络的退化问题,显著提升了模型性能。这些里程碑式的论文在ImageNet等数据集上取得了突破性成果,推动了计算机视觉的发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文简单介绍一下2012年以来几篇重要的图像分类论文。


2012年AlexNet[1],证明了深层CNN网络能提升图像分类的效果。该文章使用了8层的网络,获得了2012年ImageNet数据集上图像分类的冠军。核心trick就是relu+local response normalization + overlapping pooling。为了避免过拟合使用了data augmentation + dropout。


针对单纯通过增大网络结构来提升效果的问题,2014年GoogLeNet[2]另辟蹊跷,通过从设计网络结构的角度来提升效果。论文设计了Iception这种结构来捕捉不同scale的特征,同时又通过1乘1的卷积来降维。为了缓解梯度消失的问题,又使用了auxiliary classifiers的trick。论文的主要贡献是证明了不同scale特征级联使用可以提升效果。2015年又有基于GoogLeNet的改进版[[3],主要是提出了一些网络设计准则,并根据准则改进Inception。


2015年VGG[4],进一步证明了depth在计算机视觉中的重要性。论文中使用的卷积核大小为3乘3,通过对比不同depth的网络,来证明depth大时效果更好。论文中分别对比的depth为11,13,16,19。


2015年更为重要的两个工作是高速公路网络[5]和深度残差网络[6]。高速公路网络有点借鉴LSTM门单元的思想,通过门控制shortcut connections,从而控制信息传播,从而可以训练更深层的网络。深度残差网络首先提出深层网络存在degradation的现象,受该现象的启发,提出了拟合残差网络的方法。核心思想是shortcut connection时恒为identity,根据输入x去拟合F(x)=H(x)-x,最后再把F(x)与shortcut connection相加。当x与F(x)的维度不一样时,对x有补0和projection两种方式,projection的方式效果会稍微好一点点但是参数会多很多,因此论文使用了补0的方式。通过这种拟合残差网络的方法,随着网络的增加就没有再观测到degradation的现象了。该方法是2015年的大赢家,在ImageNet和COCO等数据集上的多种任务中获得冠军。


[1]. ImageNet Classification with Deep ConvolutionalNeural Networks 

[2]. Going deeper with convolutions 

[3]. Rethinking the Inception Architecture for Computer Vision 

[4]. VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION 

[5]. Highway Networks 

[6]. Deep Residual Learning for Image Recognition 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值