1、希尔伯特变换式
希尔伯特变换是以著名数学家大卫·希尔伯特(David Hilbert)来命名,是信号处理领域里一个重要变换。对于函数 g ( t ) g(t) g(t),其希尔伯特变换 g ^ ( t ) \hat g(t) g^(t)定义为:
(1) g ^ ( t ) = H [ g ( t ) ] = 1 π ∫ − ∞ ∞ g ( τ ) t − τ d τ = g ( t ) ∗ 1 π t \tag{1} \begin{aligned} \hat g(t)&={\mathcal H}[g(t)]\\ &=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{g(\tau)}{t-\tau}d\tau\\ &=g(t)*\frac{1}{\pi t} \end{aligned} g^(t)=H[g(t)]=π1∫−∞∞t−τg(τ)dτ=g(t)∗πt1(1)因此,希尔伯特变换结果 g ^ ( t ) \hat g(t) g^(t)可以被看作将信号 g ( t ) g(t) g(t)输入冲激响应为
(2) h Q ( t ) = 1 π t \tag{2} h_Q(t)=\frac{1}{\pi t} hQ(t)=πt1(2)线性时不变系统得到的输出信号。
进一步,我们可以得到希尔伯特逆变换为
(3) g ( t ) = H − 1 [ g ^ ( t ) ] = 1 π ∫ − ∞ ∞ g ^ ( τ ) t − τ d τ = g ^ ( t ) ∗ ( − 1 π t ) \tag{3} \begin{aligned} g(t)&={\mathcal H}^{-1}[\hat g(t)]\\ &=\frac{1}{\pi}\int_{-\infty}^{\infty}\frac{\hat g(\tau)}{t-\tau}d\tau\\ &=\hat g(t)*(-\frac{1}{\pi t}) \end{aligned} g(t)=H−1[g^(t)]=π1∫−∞∞t−τg^(τ)dτ