现代通信原理2.4:常用信号的傅立叶变换

1、复频谱

  一般来说,我们采用复频谱,它有两种表示形式,即

  • 正交形式
    G ( f ) = X ( f ) + j Y ( f ) G(f)=X(f)+jY(f) G(f)=X(f)+jY(f)
  • 幅度-相位形式
    G ( f ) = ∣ G ( f ) ∣ e j θ f G ( f ) = X 2 ( f ) + Y 2 ( f ) θ ( f ) = tan ⁡ − 1 [ Y ( f ) X ( f ) ] . \begin{aligned} G(f)&=|G(f)|e^{j\theta f}\\ G(f)&=\sqrt{X^2(f)+Y^2(f)}\\ \theta (f)&=\tan^{-1}\left[\frac{Y(f)}{X(f)}\right]. \end{aligned} G(f)G(f)θ(f)=G(f)ejθf=X2(f)+Y2(f) =tan1[X(f)Y(f)].需要注意的是,尽管有时候我们会碰上虚部为零的频谱,但更一般情况下遇到的都是复频谱。因此在画频谱图的时候就需要注意,我们需要用两张图才能够表示一个实部、虚部都不为零的频谱,当然既可以用实部-虚部,也可以用幅度-相位。
2、傅立叶变换常用性质

  傅立叶变换性质有很多。我们这里只罗列几种课程中经常会遇到的。

  • 时延
    g ( t ) ← → G ( f ) g ( t − t 0 ) ← → G ( f ) e − j 2 π f t 0 \begin{aligned} g(t)&\leftarrow\rightarrow G(f)\\ g(t-t_0)&\leftarrow\rightarrow G(f)e^{-j2\pi ft_0} \end{aligned} g(t)g(tt0)G(f)G(f)ej2πft0
  • 频移
    g ( t ) ← → G ( f ) g ( t ) e j 2 π f 0 t ← → G ( f − f 0 ) \begin{aligned} g(t)&\leftarrow\rightarrow G(f)\\ g(t)e^{j2\pi f_0t}&\leftarrow\rightarrow G(f-f_0) \end{aligned} g(t)g(t)ej2πf0tG(f)G(ff0)
  • 对偶性
    g ( t ) ← → G ( f ) G ( t ) ← → g ( − f ) \begin{aligned} g(t)&\leftarrow\rightarrow G(f)\\ G(t)&\leftarrow\rightarrow g(-f) \end{aligned} g(t)G(t)G(f)g(f)
3、冲激信号与直流信号
3.1 冲激函数

  冲激函数可以看成是某种脉冲函数的极限形式。
  如图1所示,有一宽为 a a a,高为 1 a \frac{1}{a} a1,面积为1的矩形脉冲波形。若将 a a a逐渐减小,保持面积不变,则高度不断增加。极限情况下, a → 0 a \rightarrow 0 a0,则高度 1 a \frac{1}{a} a1趋近于无穷大。这样的函数就称为冲激函数。当然其它形式的脉冲函数,也可以逼近冲激函数,只要面积保持为1,我们就称为单位冲激函数,用 δ ( x ) \delta(x) δ(x)表示,因此我们有
δ ( x ) = { 1 , x = 0 0 , x = ̸ 0. \delta(x)=\left\{\begin{aligned} 1,&\quad x=0\\ 0,&\quad x=\not 0. \end{aligned} \right. δ(x)={1,0,x=0x≠0.
由于信号的波形和频谱都有可能是冲激函数,因此我们自变量用 x x x表示,显然这里的 x x x可以是 t t t,也可以是 f f f。注意 δ ( x ) \delta(x) δ(x)有两个非常重要且有用的性质。
在这里插入图片描述

图1 矩形脉冲的极限形式
  • 冲激函数的取样性质
    g ( x ) δ ( x − x 0 ) = g ( x 0 ) δ ( x − x 0 ) , g(x)\delta(x-x_0)=g(x_0)\delta(x-x_0), g(x)δ(xx0)=g(x0)δ(xx0),这个性质说明,任何一个函数与一个冲激函数相乘,其结果还是一个冲激函数,只是强度(即面积)不再是1,而是该函数在冲激函数出现时( x = x 0 x=x_0 x=x0)的幅度。这个性质在后面模拟信号数字化部分的抽样中还要用到。
  • 冲激函数的筛选性质
    ∫ − ∞ ∞ g ( x ) δ ( x − x 0 ) d x = g ( x 0 ) ∫ − ∞ ∞ δ ( x − x 0 ) d x = g ( x 0 ) \int_{-\infty}^{\infty}g(x)\delta(x-x_0)dx=g(x_0)\int_{-\infty}^{\infty}\delta(x-x_0)dx=g(x_0) g(x)δ(xx0)dx=g(x0)δ(xx0)dx=g(x0)这个性质可能一下不容易看出来有什么用处。我们回忆下卷积运算,若有两个函数 g ( x ) g(x) g(x) m ( x ) m(x) m(x),它们的卷积为
    g ( x ) ∗ m ( x ) = ∫ − ∞ ∞ g ( τ ) m ( x − τ ) d τ . g(x)*m(x)=\int_{-\infty}^{\infty}g(\tau)m(x-\tau)d\tau. g(x)m(x)=g(τ)m(xτ)dτ. m ( x ) = δ ( x ) m(x)=\delta(x) m(x)=δ(x),有
    g ( x ) ∗ δ ( x ) = ∫ − ∞ ∞ g ( τ ) δ ( x − τ ) d τ = ∫ − ∞ ∞ g ( τ ) δ ( τ − x ) d τ , g(x)*\delta(x)=\int_{-\infty}^{\infty}g(\tau)\delta(x-\tau)d\tau=\int_{-\infty}^{\infty}g(\tau)\delta(\tau-x)d\tau, g(x)δ(x)=g(τ)δ(xτ)dτ=g(τ)δ(τx)dτ,由筛选性质可得 g ( x ) ∗ δ ( x ) = g ( x ) ∫ − ∞ ∞ δ ( τ − x ) d τ = g ( x ) . g(x)*\delta(x)=g(x)\int_{-\infty}^{\infty}\delta(\tau-x)d\tau=g(x). g(x)δ(x)=g(x)δ(τx)dτ=g(x).因此,任何函数与冲激函数卷积,其结果就是这个函数本身。而任何一个函数与移位之后的冲激函数卷积,则为这个函数移位,即
    g ( x ) ∗ δ ( x − x 0 ) = ∫ − ∞ ∞ g ( τ ) δ ( x − x 0 − τ ) d τ = ∫ − ∞ ∞ g ( τ ) δ [ τ − ( x − x 0 ) ] d τ = g ( x − x 0 ) \begin{aligned} g(x)*\delta(x-x_0)&=\int_{-\infty}^{\infty}g(\tau)\delta(x-x_0-\tau)d\tau\\ &=\int_{-\infty}^{\infty}g(\tau)\delta[\tau-(x-x_0)]d\tau\\ &=g(x-x_0) \end{aligned} g(x)δ(xx0)=g(τ)δ(xx0τ)dτ=g(τ)δ[τ(xx0)]dτ=g(xx0)
3.2 冲激信号及其频谱密度

  所谓冲激信号,是指其波形为冲激函数的信号,即 g ( t ) = A δ ( t ) g(t)=A\delta (t) g(t)=Aδ(t),其中 A A A为冲激强度(即面积)。显然冲激信号并非物理可实现信号,但用它来刻画持续时间非常短,瞬时幅度非常大的信号,是非常有用的。
  下面我们来看冲激信号的频谱密度,我们可以得到傅里叶变换对
g ( t ) = A δ ( t ) ↔ G ( f ) = A , g(t)=A\delta (t)\leftrightarrow G(f)=A, g(t)=Aδ(t)G(f)=A,显然,冲激信号的频谱为平坦的直线,其幅度为冲激信号的强度 A A A。冲激信号波形与频谱示意图如图2所示。

在这里插入图片描述

图2 冲激信号波形与频谱密度函数示意图
3.3 直流信号及其频谱密度

  若信号的频谱为冲激函数,即 G ( f ) = A δ ( f ) G(f)=A\delta(f) G(f)=Aδ(f),根据傅里叶变换的对偶性质,可以得到傅里叶变换对
g ( t ) = A ↔ G ( f ) = A δ ( f ) , g(t)=A\leftrightarrow G(f)=A\delta(f), g(t)=AG(f)=Aδ(f),其示意图如图3所示。显然,该波形为直流信号,从频域也可以看出,信号只在频率 f = 0 f=0 f=0点处幅度不为零。

在这里插入图片描述

图3 直流信号波形与频谱密度函数示意图
4、单音信号的傅里叶变换

  我们先来看余弦信号的傅里叶变换,即
g ( t ) = cos ⁡ ( 2 π f 0 t ) ↔ G ( f ) = 1 2 [ δ ( f − f 0 ) + δ ( f + f 0 ] , g(t)=\cos(2\pi f_0t)\leftrightarrow G(f)=\frac{1}{2}\left[\delta(f-f_0)+\delta(f+f_0\right], g(t)=cos(2πf0t)G(f)=21[δ(ff0)+δ(f+f0],其波形与频谱如图4所示。从图中可以很容易看出,为何我们将余弦信号成为单音信号,因为其只具有一个频率 f 0 f_0 f0。【请大家思考,为何图中有两个冲激,但我们却说它只具有一个频率?】

在这里插入图片描述

图4 余弦信号波形与频谱密度函数示意图

  除了余弦信号之外,正弦信号也是单音信号,其傅里叶变换为
g ( t ) = sin ⁡ ( 2 π f 0 t ) ↔ G ( f ) = 1 j 2 [ δ ( f − f 0 ) − δ ( f + f 0 ] , g(t)=\sin(2\pi f_0t)\leftrightarrow G(f)=\frac{1}{j2}\left[\delta(f-f_0)-\delta(f+f_0\right], g(t)=sin(2πf0t)G(f)=j21[δ(ff0)δ(f+f0],显然该频谱不再是实频谱,因此在作图时就需要用两张图来表示,即同相-正交,或者幅度-相位。

在这里插入图片描述

图5 正弦信号波形与频谱密度函数示意图(幅度-相位)
5、矩形脉冲信号与三角形脉冲信号

  我们用 A R e c t ( t − t 0 τ ) A{\rm Rect}\left(\frac{t-t_0}{\tau} \right) ARect(τtt0)来表示中心在 t 0 t_0 t0,宽度为 τ \tau τ,高度为 A A A的矩形脉冲信号(有时也叫门函数,因为看起来很象门的形状)。由于门的中心在原点,因此图6中的矩形脉冲信号可以写为 g ( t ) = A R e c t ( t τ ) g(t)=A{\rm Rect}\left(\frac{t}{\tau}\right) g(t)=ARect(τt)。显然矩形脉冲信号一个能量信号,因为其持续时间有限,能量为有限值。矩形脉冲信号的傅里叶变换为
g ( t ) = R e c t ( t τ ) ↔ G ( f ) = τ S a ( π f τ ) , g(t)={\rm Rect}\left(\frac{t}{\tau}\right)\leftrightarrow G(f)=\tau{\rm Sa}\left(\pi f\tau\right), g(t)=Rect(τt)G(f)=τSa(πfτ),其波形与频谱示意图见图6。
在这里插入图片描述

图6 矩形脉冲信号波形及其频谱密度函数示意图

  注意这里的函数 S a ( x ) {\rm Sa}(x) Sa(x)称为抽样函数,它的定义式为
S a ( x ) = sin ⁡ ( x ) x , {\rm Sa}(x)=\frac{\sin(x)}{x}, Sa(x)=xsin(x),注意我们也可以把Sa函数写成Sinc函数,二者关系为 S a ( π x ) = S i n c ( x ) {\rm Sa}(\pi x)={\rm Sinc}(x) Sa(πx)=Sinc(x)
  显然,当 x = 0 x=0 x=0时,根据罗比塔法则, S a ( x ) = 1 {\rm Sa}(x)=1 Sa(x)=1;当 x = k π x=k\pi x=kπ k k k为整数且不为零时, S a ( x ) = 0 {\rm Sa}(x)=0 Sa(x)=0,因此 k π k\pi kπ为Sa函数的过零点。从原点到第一过零点之间的频谱成分我们称为主瓣,第 k k k k + 1 k+1 k+1个过零点之间的频谱成分我们称为旁瓣,这里 k = ̸ 0 k=\not 0 k≠0。随着 k k k的增大,旁瓣逐渐衰减。


  对于函数 S a ( π f τ ) {\rm Sa}\left(\pi f \tau\right) Sa(πfτ),当 f = k τ f=\frac{k}{\tau} f=τk k k k为整数且不为零时,函数值为零。从图6中可以看出,矩形脉冲波形的频谱密度为Sa函数,显然信号带宽是无穷宽的。对于这一类函数,我们常定义过零点带宽,因此图6中信号的第一过零点带宽为 1 τ \frac{1}{\tau} τ1
  我们再来看另外一种脉冲信号,三角形脉冲波形,如图7所示。写成表达式为
A Λ ( t τ ) ↔ A S a 2 ( π f τ ) . A\Lambda(\frac{t}{\tau})\quad \leftrightarrow \quad A{\rm Sa}^2\left(\pi f\tau \right). AΛ(τt)ASa2(πfτ).其中 Λ ( t − t 0 τ ) \Lambda(\frac{t-t_0}{\tau}) Λ(τtt0)表示底边宽度为 2 τ 2\tau 2τ,底边中点在 t 0 t_0 t0处的三角形脉冲。它的频谱密度函数为Sa函数的平方,第一过零点带宽为 1 τ \frac{1}{\tau} τ1

在这里插入图片描述

图7 三角形脉冲信号及其频谱密度函数示意图
6、理想低通信号波形与频谱

  理想低通信号,是指其频谱密度函数具有图8(b)中频谱密度的信号,因此其波形具有图8(a)中的形状,表达式为
g ( t ) = f 0 S a ( π f 0 t ) ↔ G ( f ) = R e c t ( f f 0 ) . g(t)=f_0{\rm Sa}(\pi f_0t)\quad \leftrightarrow \quad G(f)={\rm Rect}\left(\frac{f}{f_0}\right). g(t)=f0Sa(πf0t)G(f)=Rect(f0f).因此,理想低通信号就是频谱为矩形函数的信号,根据傅里叶变换的对偶形式,显然波形为Sa函数。注意此时波形的过零点为 k f 0 \frac{k}{f_0} f0k,这里 k k k为不等于零的整数。

提示:矩形脉冲信号与理想低通信号,是两种完全不同的信号。后面也会经常用到这两种波形,大家一定要分清楚二者的区别。

在这里插入图片描述

图8 理想低通信号波形与频谱密度函数示意图
7、周期信号的频谱
7.1 周期信号傅里叶变换的一般形式

  周期信号给 g ( t ) g(t) g(t)傅里叶变换的一般形式为
(7-1) g ( t ) ↔ G ( f ) = ∑ k = − ∞ ∞ C n δ ( f − k f 0 ) , \tag{7-1} g(t)\quad \leftrightarrow \quad G(f)=\sum_{k=-\infty}^{\infty}C_n\delta(f-kf_0), g(t)G(f)=k=Cnδ(fkf0),(7-1)其中 T 0 T_0 T0 g ( t ) g(t) g(t)的周期, f 0 = 1 T 0 f_0=\frac{1}{T_0} f0=T01
(7-2) C n = 1 T 0 ∫ − T 0 2 T 0 2 g ( t ) e − j 2 π n f 0 t d t \tag{7-2} C_n=\frac{1}{T_0}\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}}g(t)e^{-j2\pi nf_0t}dt Cn=T012T02T0g(t)ej2πnf0tdt(7-2) g ( t ) g(t) g(t)傅里叶级数的系数。直接用上式求解 C n C_n Cn往往比较繁琐。下面我们介绍另一种计算方法:
(7-3) C n = 1 T 0 G 0 ( f ) ∣ f = n f 0 , \tag{7-3} C_n=\frac{1}{T_0}G_0(f)|_{f=nf_0}, Cn=T01G0(f)f=nf0,(7-3)其中 G 0 ( f ) G_0(f) G0(f) g 0 ( t ) g_0(t) g0(t)的傅里叶变换,而
(7-4) g 0 ( t ) = { g ( t ) , t ∈ [ − T 0 2 , T 0 2 ] 0 , o t h e r w i s e \tag{7-4} g_0(t)=\left\{\begin{aligned} g(t), \quad &t\in [-\frac{T_0}{2},\frac{T_0}{2}]\\ 0,\quad &\rm otherwise \end{aligned}\right. g0(t)=g(t),0,t[2T0,2T0]otherwise(7-4) g ( t ) g(t) g(t)的截断函数。
  从(7-4)可以看出,只要是周期信号,频谱一定是离散的冲激序列,两个冲激之间的间隔为 f 0 f_0 f0。不同的周期信号, g 0 ( t ) g_0(t) g0(t)不同,因而 C n C_n Cn也就不同,因此冲激的强度也就不同。下面我们来具体看两个周期信号的例子。

7.2 周期冲激序列的频谱

  周期冲激序列波形与频谱示意图如图9所示。周期冲激序列的波形表达式可以写作
g ( t ) = ∑ n = − ∞ ∞ δ ( t − n T 0 ) , g(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT_0), g(t)=n=δ(tnT0),可以写出它的截断函数为
g 0 ( t ) = δ ( t ) , g_0(t)=\delta(t), g0(t)=δ(t),因此,有 G 0 ( f ) = 1 G_0(f)=1 G0(f)=1,由(7-2)可以得到
C n = 1 T 0 ,   n = 0 , ± 1 , ± 2 , … C_n=\frac{1}{T_0},\ n=0,\pm1,\pm 2,\ldots Cn=T01, n=0,±1,±2,故可以得到傅里叶变换对
g ( t ) = ∑ n = − ∞ ∞ δ ( t − n T 0 ) ↔ G ( f ) = 1 T 0 ∑ k = − ∞ ∞ δ ( f − k f 0 ) . g(t)=\sum_{n=-\infty}^{\infty}\delta(t-nT_0) \quad \leftrightarrow \quad G(f)=\frac{1}{T_0}\sum_{k=-\infty}^{\infty}\delta(f-kf_0). g(t)=n=δ(tnT0)G(f)=T01k=δ(fkf0).不难看出, G ( f ) G(f) G(f)的每个冲激强度是相等的,这是由 g 0 ( t ) = δ ( t ) g_0(t)=\delta(t) g0(t)=δ(t)决定的。

在这里插入图片描述

图9 周期冲激序列波形及其频谱密度函数示意图
7.3 周期矩形脉冲序列的频谱

  周期矩形脉冲序列的波形与频谱如图10所示。表达式推导如下:
g 0 ( t ) = R e c t ( t τ ) ↔ G 0 ( f ) = τ S a ( π f τ ) C n = τ T 0 S a ( n π f 0 τ ) g ( t ) = ∑ n = − ∞ ∞ R e c t ( t − n T 0 τ ) ↔ G ( f ) = τ T 0 ∑ k = − ∞ ∞ S a ( n π f 0 t ) δ ( f − k f 0 ) . \begin{aligned} &g_0(t)={\rm Rect}(\frac{t}{\tau})\quad \leftrightarrow \quad G_0(f)=\tau{\rm Sa}(\pi f\tau) \\ &C_n=\frac{\tau}{T_0}{\rm Sa}(n\pi f_0\tau)\\ &g(t)=\sum_{n=-\infty}^{\infty}{\rm Rect}(\frac{t-nT_0}{\tau}) \quad \leftrightarrow \quad G(f)=\frac{\tau}{T_0}\sum_{k=-\infty}^{\infty}{\rm Sa}(n\pi f_0t)\delta(f-kf_0). \end{aligned} g0(t)=Rect(τt)G0(f)=τSa(πfτ)Cn=T0τSa(nπf0τ)g(t)=n=Rect(τtnT0)G(f)=T0τk=Sa(nπf0t)δ(fkf0).在这里插入图片描述

图10 周期矩形脉冲序列波形及其频谱密度函数示意图
  • 19
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
编辑推荐 本书全面论述了信号完整性问题,它以入门式的切入方式,使得读者很容易认识到物理互连影响电气性能的实质,从而可以尽快掌握信号完整性设计技术。本书作者从实践的角度指出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。 本书的主要内容 ·信号完整性和物理设计概论 ·带宽、电感和特性阻抗的实质含义 ·电阻、电容、电感和阻抗的相关分析 ·解决信号完整性问题的四个实用技术手段:经验法则、解析近似、数值模拟、实际测量 ·物理互连设计对信号完整性的影响 ·数学推导背后隐藏的解决方案 ·改进信号完整性推荐的设计准则 通常,大多数同类书籍都会花费大量的篇幅进行严格的理论推导和数学描述,而本书则更强调直观理解、实用工具和工程实践。 内容简介 本书全面论述了信号完整性问题。主要讲述了信号完整性和物理设计概论,带宽、电感和特性阻抗的实质含义,电阻、电容、电感和阻抗的相关分析,解决信号完整性问题的四个实用技术手段,物理互连设计对信号完整性的影响,数学推导背后隐藏的解决方案,以及改进信号完整性推荐的设计准则等。该书与其他大多数同类书籍相比更强调直观理解、实用工具和工程实践。它以入门式的切入方式,使得读者很容易认识到物理互连影响电气性能的实质,从而可以尽快掌握信号完整性设计技术。本书作者以实践专家的视角提出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。这是面向电子工业界的设计工程师和产品负责人的一本具有实用价值的参考书,其目的在于帮助他们在信号完整性问题出现之前能提前发现并及早加以解决,同时也可作为相关专业本科生及研究生的教学指导用书。 作者简介 Eric Bogatin,于1976年获麻省理工大学物理学士学位,并于1980年获亚利桑那大学物理硕士和博士学位。目前是GigaTest实验室的首席技术主管。多年来,他在信号完整性领域,包括基本原理、测量技术和分析工具等方面举办过许多短期课程,培训过4000多工程师,在信号完整性、互连设计、封装技术等领域已经发表了100多篇技术论文、专栏文章和专著。 译者简介: 李玉山,现为西安电子科技大学教授、国家重点学科“电路与系统”博士生导师、国家电工电子教学基地副主任、电路CAD研究所所长、全国通信ASIC委员会委员及国家IC设计西安基地专家委员。曾于1986年和1999年分别赴美国迈阿密大学和北卡罗来纳州立大学合作研究机器视觉和VLSI设计。 目录 第1章 信号完整性分析概论 1.1 信号完整性的含义 1.2 单一网络的信号质量 1.3 串扰 1.4 轨道塌陷噪声 1.5 电磁干扰 1.6 信号完整性的两个重要推论 1.7 电子产品的趋势 1.8 新设计方法学的必要性 1.9 一种新的产品设计方法学 1.10 仿真 1.11 模型和建模 1.12 通过计算创建电路模型 1.13 三种测量技术 1.14 测量的作用 1.15 小结 第2章 时域与频域 2.1 时域 2.2 频域中的正弦波 2.3 频域中解决问题的捷径 2.4 正弦波特征 2.5 傅里叶变换 2.6 重复信号的频谱 2.7 理想方波的频谱 2.8 从频域到时域 2.9 带宽对上升时间的影响 2.10 带宽及上升时间 2.11 “有效的”含义 2.12 实际信号的带宽 2.13 带宽和时钟频率 2.14 测量的带宽 2.15 模型的带宽 2.16 互连线的带宽 2.17 小结 第3章 阻抗和电气模型 3.1 用阻抗描述信号完整性 3.2 阻抗的含义 3.3 实际和理想的电路元件 3.4 时域中理想电阻的阻抗 3.5 时域中理想电容的阻抗 3.6 时域中理想电感的阻抗 3.7 频域中的阻抗 3.8 等效电气电路模型 3.9 电路理论和SPICE 3.10 建模简介 3.11 小结 第4章 电阻的物理基础 4.1 将物理设计转化为电气性能 4.2 互连线电阻的最佳近似 4.3 体电阻率 4.4 单位长度电阻 4.5 方块电阻 4.6 小结 第5章 电容的物理基础 5.1 电容中的电流流动 5.2 球面电容 5.3 平行板近似 5.4 介电常数 5.5 电源、地平面和去耦电容 5.6 单位长度电容 5.7 二维场求解器 5.8 有效介电常数 5.9 小结 第6章 电感的物理基础 6.1 电感的含义 6.2 电感定律之一:电流周围将形成闭合磁力线圈 6.3 电感定律之二:电感是导体上流过单位安培电流时,导体周围磁力线圈的韦伯值 6.4 自感和互感 6.5 电感定律之三:当导体周围的磁力线圈匝数变化时,导体两端将产生感应电压 6.6 局部电感 6.7 有效电感、总电感或净电感及地弹 6.8 回路自感和回路互感 6.9 电源分布系统和回路电感 6.10 单位面积的回路电感 6.11 平面和过孔接触孔的回路电感 6.12 具有出砂孔区域的平面回路电感 …… 第7章 传输线的物理基础 第8章 传输线与反射 第9章 有损线、上升边退化和材料特性 第10章 传输线的串扰 第11章 差分对与差分阻抗 附录A 100条使信号完整性问题最小化的通用设计原则 附录B 100条估计信号完整性效应的经验法则 附录C 参考文献 附录D 术语表 硬件工程师的首选发表于 2008-10-28 0 进行高速PCB板设计,必然要考虑信号完整性要求,而对于在校大学生来说,教授们很少有谈到这方面内容的,最多是考虑一下EMC/EMI问题,这本书很适合学生自学。马上要读研究生了,才发现要找到一份硬件工程师的工作,要在课外学习的东西太多太多了,而信号完整性分析恰恰是需要学习的比较重要的一部分。 好书,经典!发表于 2008-10-07 08:32个人评分:    过瘾 受益匪浅    相当经典的书,翻译的也还可以
1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更多咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值