【信号与系统 - 3】典型信号的傅里叶变换

1 门函数

g τ ( t ) g_\tau(t) gτ(t) 的傅里叶变换得到的频谱函数为:

F ( j w ) = τ S a ( w τ 2 ) F(jw)=\tau Sa(\frac{w\tau}{2}) F(jw)=τSa(2wτ)

对应的模为:

∣ F ( j w ) ∣ = τ ∣ S a ( w τ 2 ) ∣ |F(jw)|=\tau |Sa(\frac{w\tau}{2})| F(jw)=τSa(2wτ)
其中:
1)当 w = 0 w=0 w=0 时, F ( j w ) = τ F(jw)=\tau F(jw)=τ
2)当 F ( j w ) = 0 F(jw)=0 F(jw)=0
w τ 2 = k π \frac{w\tau}{2}=k\pi 2wτ=,则 w = 2 k π τ w=\frac{2k\pi}{\tau} w=τ2 ∣ k ∣ = 1 , 2 , 3.. |k|=1,2,3.. k=1,2,3..

在这里插入图片描述

2 冲激函数

δ ( t ) \delta(t) δ(t) 的傅里叶变换得到的频谱函数为:

F ( j w ) = ∫ − ∞ + ∞ δ ( t ) e − j w t d t F(jw)=\int_{-\infty}^{+\infty}\delta(t)e^{-jwt}dt F(jw)=+δ(t)ejwtdt

根据冲激函数的采样性质
∫ − ∞ + ∞ δ ( t ) f ( t ) d t = f ( 0 ) \int_{-\infty}^{+\infty}\delta(t)f(t)dt=f(0) +δ(t)f(t)dt=f(0)
得到:

F ( j w ) = e 0 = 1 F(jw)=e^0=1 F(jw)=e0=1

则冲激信号的频谱为均匀谱

3 直流信号

由上面 F [ δ ( t ) ] = 1 \mathscr{F}[\delta(t)]=1 F[δ(t)]=1 F ( j w ) = 1 F(jw)=1 F(jw)=1,则:(注:傅里叶反变换积分积的是 w w w)

δ ( t ) = F − 1 [ 1 ] = 1 2 π ∫ − ∞ + ∞ 1 ⋅ e j w t d w \delta(t)=\mathscr{F}^{-1}[1]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}1\cdot e^{jwt}dw δ(t)=F1[1]=2π1+1ejwtdw

由于 f ( t ) = 1 f(t)=1 f(t)=1 的傅里叶变换得到的频谱函数为:

F ( j w ) = ∫ − ∞ + ∞ e − j w t d t F(jw)=\int_{-\infty}^{+\infty}e^{-jwt}dt F(jw)=+ejwtdt

t = w t=w t=w

δ ( w ) = 1 2 π ∫ − ∞ + ∞ 1 ⋅ e j t w d t \delta(w)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}1\cdot e^{jtw}dt δ(w)=2π1+1ejtwdt

因为冲激函数为偶函数

δ ( w ) = δ ( − w ) = 1 2 π ∫ − ∞ + ∞ 1 ⋅ e − j w t d t \delta(w)=\delta(-w)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}1\cdot e^{-jwt}dt δ(w)=δ(w)=2π1+1ejwtdt

则:

2 π δ ( w ) = ∫ − ∞ + ∞ 1 ⋅ e − j w t d t = F [ 1 ] 2\pi\delta(w)=\int_{-\infty}^{+\infty}1\cdot e^{-jwt}dt=\mathscr{F}[1] 2πδ(w)=+1ejwtdt=F[1]

F ( j w ) = 2 π δ ( w ) F(jw)=2\pi\delta(w) F(jw)=2πδ(w)

4 单边指数信号

4-1 半边指数信号

  • 左半边指数信号 f ( t ) = e a t ⋅ u ( − t ) f(t)=e^{at}\cdot u(-t) f(t)=eatu(t) a > 0 a>0 a>0
    在这里插入图片描述

F ( j w ) = 1 a − j w = 1 a 2 + w 2 e − j ⋅ a r c t a n − w a = 1 a 2 + w 2 e j ⋅ a r c t a n w a F(jw)=\frac{1}{a-jw}=\frac{1}{\sqrt{a^2+w^2}}e^{-j\cdot arctan\frac{-w}{a}}=\frac{1}{\sqrt{a^2+w^2}}e^{j\cdot arctan\frac{w}{a}} F(jw)=ajw1=a2+w2 1ejarctanaw=a2+w2 1ejarctanaw

  • 右半边指数信号 f ( t ) = e − a t ∗ u ( t ) f(t)=e^{-at}*u(t) f(t)=eatu(t) a > 0 a>0 a>0
    在这里插入图片描述

F ( j w ) = 1 a + j w = 1 a 2 + w 2 e − j ⋅ a r c t a n w a F(jw)=\frac{1}{a+jw}=\frac{1}{\sqrt{a^2+w^2}}e^{-j\cdot arctan\frac{w}{a}} F(jw)=a+jw1=a2+w2 1ejarctanaw

4-2 双边指数信号

  • 双边指数信号1 f ( t ) = e − a ∣ t ∣ f(t)=e^{-a|t|} f(t)=eat a > 0 a>0 a>0

F ( j w ) = 1 a − j w + 1 a + j w = 2 a a 2 + w 2 = 2 a a 2 + w 2 e 0 F(jw)=\frac{1}{a-jw}+\frac{1}{a+jw}=\frac{2a}{a^2+w^2}=\frac{2a}{a^2+w^2}e^0 F(jw)=ajw1+a+jw1=a2+w22a=a2+w22ae0

  • 双边指数信号2 f ( t ) = e − a t u ( t ) − e a t u ( − t ) f(t)=e^{-at}u(t)-e^{at}u(-t) f(t)=eatu(t)eatu(t) a > 0 a>0 a>0

在这里插入图片描述

F ( j w ) = − 1 a − j w + 1 a + j w = − j 2 w a 2 + w 2 F(jw)=-\frac{1}{a-jw}+\frac{1}{a+jw}=-j\frac{2w}{a^2+w^2} F(jw)=ajw1+a+jw1=ja2+w22w

1)当 w < 0 w<0 w<0

F ( j w ) = 2 w a 2 + w 2 ( c o s π 2 + j s i n π 2 ) = 2 w a 2 + w 2 e π 2 F(jw)=\frac{2w}{a^2+w^2}(cos\frac{\pi}{2}+jsin\frac{\pi}{2})=\frac{2w}{a^2+w^2}e^{\frac{\pi}{2}} F(jw)=a2+w22w(cos2π+jsin2π)=a2+w22we2π

2)当 w > 0 w>0 w>0

F ( j w ) = 2 w a 2 + w 2 ( c o s π 2 − j s i n π 2 ) = 2 w a 2 + w 2 e − π 2 F(jw)=\frac{2w}{a^2+w^2}(cos\frac{\pi}{2}-jsin\frac{\pi}{2})=\frac{2w}{a^2+w^2}e^{-\frac{\pi}{2}} F(jw)=a2+w22w(cos2πjsin2π)=a2+w22we2π

则相频函数为:

φ ( w ) = { − π 2 w > 0 π 2 w < 0 \varphi(w)=\begin{cases} -\frac{\pi}{2} & w>0\\ \frac{\pi}{2} & w<0\\ \end{cases} φ(w)={2π2πw>0w<0

4-3 符号函数 S g n ( t ) Sgn(t) Sgn(t)

S g n ( t ) Sgn(t) Sgn(t) 实际上就是 双边指数信号2 f ( t ) = e − a t u ( t ) − e a t u ( − t ) f(t)=e^{-at}u(t)-e^{at}u(-t) f(t)=eatu(t)eatu(t) ,在 a → 0 a\to{0} a0

F ( j w ) = lim ⁡ a → 0 − j 2 w a 2 + w 2 = − j 2 w F(jw)=\lim_{a\to{0}}-j\frac{2w}{a^2+w^2}=-j\frac{2}{w} F(jw)=a0limja2+w22w=jw2

同理有相同的相频函数:

φ ( w ) = { − π 2 w > 0 π 2 w < 0 \varphi(w)=\begin{cases} -\frac{\pi}{2} & w>0\\ \frac{\pi}{2} & w<0\\ \end{cases} φ(w)={2π2πw>0w<0

4-4 阶跃函数 u ( t ) u(t) u(t)

  • u ( t ) = 1 2 [ S g n ( t ) + 1 ] u(t)=\frac{1}{2}[Sgn(t)+1] u(t)=21[Sgn(t)+1]
    由于

{ F [ 1 ] = 2 π δ ( w ) F [ S g n ( t ) ] = − j 2 w \begin{cases} \mathscr{F}[1]=2\pi\delta(w)\\ \mathscr{F}[Sgn(t)]=-j\frac{2}{w} \end{cases} {F[1]=2πδ(w)F[Sgn(t)]=jw2

则:

F [ u ( t ) ] = 1 2 [ 2 π δ ( w ) + ( − j 2 w ) ] = π δ ( w ) − j 1 w = π δ ( w ) + 1 j w \mathscr{F}[u(t)]=\frac{1}{2}[2\pi\delta(w)+(-j\frac{2}{w})]=\pi\delta(w)-j\frac{1}{w}=\pi\delta(w)+\frac{1}{jw} F[u(t)]=21[2πδ(w)+(jw2)]=πδ(w)jw1=πδ(w)+jw1

4-5 冲击偶函数 δ ′ ( t ) \delta'(t) δ(t)

δ ( t ) = F − 1 [ 1 ] = 1 2 π ∫ − ∞ + ∞ 1 ∗ e j w t d w \delta(t)=\mathscr{F}^{-1}[1]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}1*e^{jwt}dw δ(t)=F1[1]=2π1+1ejwtdw

两边同时求导:

δ ′ ( t ) = 1 2 π ⋅ d d t [ ∫ − ∞ + ∞ e j w t d w ] = 1 2 π ∫ − ∞ + ∞ d d t ( e j w t ) d w = 1 2 π ∫ − ∞ + ∞ ( j w ) e j w t d w \delta'(t)=\frac{1}{2\pi}\cdot \frac{d}{dt}[\int_{-\infty}^{+\infty}e^{jwt}dw]=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{d}{dt}(e^{jwt})dw=\frac{1}{2\pi}\int_{-\infty}^{+\infty}(jw)e^{jwt}dw δ(t)=2π1dtd[+ejwtdw]=2π1+dtd(ejwt)dw=2π1+(jw)ejwtdw

δ ′ ( t ) \delta'(t) δ(t) 的傅里叶反变换为:

δ ′ ( t ) = 1 2 π ∫ − ∞ + ∞ F [ δ ′ ( t ) ] e j w t d w \delta'(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\mathscr{F}[\delta'(t)]e^{jwt}dw δ(t)=2π1+F[δ(t)]ejwtdw

则:

F [ δ ′ ( t ) ] = j w \mathscr{F}[\delta'(t)]=jw F[δ(t)]=jw

总结:

F [ d n d ( t n ) ] = ( j w ) n \mathscr{F}[\frac{d^n}{d(t^n)}]=(jw)^n F[d(tn)dn]=(jw)n

5 正余弦信号

{ c o s t = e j t + e − j t 2 s i n t = e j t − e − j t 2 j = − j e j t − e − j t 2 \begin{cases} cost=\frac{e^{jt}+e^{-jt}}{2}\\ sint=\frac{e^{jt}-e^{-jt}}{2j}=-j\frac{e^{jt}-e^{-jt}}{2}\\ \end{cases} {cost=2ejt+ejtsint=2jejtejt=j2ejtejt

由于 1 ↔ 2 π δ ( w ) 1\leftrightarrow 2\pi\delta(w) 12πδ(w),且根据频移性有 1 ⋅ e ± j w 0 t ↔ 2 π δ ( w ∓ w 0 ) 1\cdot e^{\pm jw_0t}\leftrightarrow 2\pi\delta(w\mp w_0) 1e±jw0t2πδ(ww0)

{ c o s t ↔ 2 π [ δ ( w − 1 ) + δ ( w + 1 ) ] 2 = π [ δ ( w + 1 ) + δ ( w − 1 ) ] s i n t ↔ − j 2 π [ δ ( w − 1 ) − δ ( w + 1 ) ] 2 = j π [ δ ( w + 1 ) − δ ( w − 1 ) ] \begin{cases} cost\leftrightarrow \frac{2\pi[\delta(w-1)+\delta(w+1)]}{2}=\pi[\delta(w+1)+\delta(w-1)]\\ sint\leftrightarrow -j\frac{2\pi[\delta(w-1)-\delta(w+1)]}{2}=j\pi[\delta(w+1)-\delta(w-1)]\\ \end{cases} {cost22π[δ(w1)+δ(w+1)]=π[δ(w+1)+δ(w1)]sintj22π[δ(w1)δ(w+1)]=[δ(w+1)δ(w1)]

  • 17
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值