数学题类英语作文(导数大题)

最近我看到过这样一道英语作文题,这类英语作文题很少见,但也有必要讲一讲怎么写。
在这里插入图片描述

简化题意:帮Peter完成以下一道题:

f ( x ) = a x 2 − ( a + 6 ) x + 3 ln ⁡ x f(x)=ax^2-(a+6)x+3\ln x f(x)=ax2(a+6)x+3lnx
(1)讨论当 a = 1 a=1 a=1时, f ( x ) f(x) f(x)的单调区间
(2)求得实数 a a a的一个范围使得当 2 ≤ x ≤ 3 e 2\leq x \leq 3e 2x3e f ( x ) ≥ − 6 f(x)\geq-6 f(x)6恒成立

解:
( 1 ) \quad(1) (1) a = 1 a=1 a=1时, f ( x ) = x 2 − 7 x + 3 ln ⁡ x f(x)=x^2-7x+3\ln x f(x)=x27x+3lnx

\qquad 定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) f ′ ( x ) = 2 x − 7 + 3 x = 2 x 2 − 7 x + 3 x = ( x − 3 ) ( 2 x − 1 ) x f'(x)=2x-7+\dfrac 3x=\dfrac{2x^2-7x+3}{x}=\dfrac{(x-3)(2x-1)}{x} f(x)=2x7+x3=x2x27x+3=x(x3)(2x1)

\qquad 可能的极值点: x 1 = 1 2 , x 2 = 3 x_1=\dfrac 12,x_2=3 x1=21,x2=3

( 0 , 1 2 ) ( 0,\dfrac 12) (0,21) 1 2 \dfrac 12 21 ( 1 2 , 3 ) (\dfrac 12,3) (21,3) 3 3 3 ( 3 , + ∞ ) (3,+\infty) (3,+)
f ′ ( x ) f'(x) f(x) + + + 0 0 0 − - 0 0 0 + + +
f ( x ) f(x) f(x) ↗ \nearrow 极大值 ↘ \searrow 极小值 ↗ \nearrow

\qquad 单调递增区间为 ( 0 , 1 2 ] (0,\dfrac 12] (0,21] [ 3 , + ∞ ) [3,+\infty) [3,+),单调递减区间为 [ 1 2 , 3 ] [\dfrac 12,3] [21,3]

( 2 ) f ′ ( x ) = 2 a x − ( a + 6 ) x + 3 ln ⁡ x = ( a x − 3 ) ( 2 x − 1 ) x \quad(2)f'(x)=2ax-(a+6)x+3\ln x=\dfrac{(ax-3)(2x-1)}{x} (2)f(x)=2ax(a+6)x+3lnx=x(ax3)(2x1)

\qquad 依题意, f ( 2 ) = 2 a − 12 + 3 ln ⁡ 2 ≥ − 6 f(2)=2a-12+3\ln 2\geq-6 f(2)=2a12+3ln26,即 a ≥ 3 − 3 ln ⁡ 2 2 a\geq 3-\dfrac{3\ln 2}{2} a323ln2

\qquad a ≤ 6 a\leq6 a6时, 3 a ≥ 1 2 \dfrac{3}{a}\geq\dfrac 12 a321 ( 3 a , + ∞ ) (\dfrac 3a,+\infty) (a3,+)为单调递增区间

\qquad a > 6 a>6 a>6时, 3 a < 1 2 \dfrac 3a<\dfrac 12 a3<21 ( 1 2 , + ∞ ) (\dfrac 12,+\infty) (21,+)为单调递增区间

\qquad 所以当 a ≥ 3 − 3 ln ⁡ 2 2 a\geq3-\dfrac{3\ln 2}{2} a323ln2时, ( 2 , + ∞ ) (2,+\infty) (2,+)为单调递增区间

\qquad 所以 f ( 3 e ) > f ( 2 ) ≥ − 6 f(3e)>f(2)\geq-6 f(3e)>f(2)6

\qquad 综上所述, a a a的取值范围为 ( 3 − 3 ln ⁡ 2 2 , + ∞ ) (3-\dfrac{3\ln 2}{2},+\infty) (323ln2,+)


题目解完了,接下来就是用英文写信。

Dear Peter: \text{Dear Peter:} Dear Peter:

I’m glad to write this letter to you.And I have solved the quetion you asked me before.Now let me tell you how  \qquad \text{I'm glad to write this letter to you.And I have solved the quetion you asked me before.Now let me tell you how } I’m glad to write this letter to you.And I have solved the quetion you asked me before.Now let me tell you how 
to do it. \text{to do it.} to do it.

For the first quetion,when a=1, f ( x ) = x 2 − 7 x + 3 ln ⁡ x .And  f ′ ( x ) = 2 x − 7 + 3 x = ( x − 3 ) ( 2 x − 1 ) x .So we can know \text{For the first quetion,when a=1,}f(x)=x^2-7x+3\ln x \text{.And }f'(x)=2x-7+\dfrac 3x=\dfrac{(x-3)(2x-1)}{x}\text{.So we can know} For the first quetion,when a=1,f(x)=x27x+3lnx.And f(x)=2x7+x3=x(x3)(2x1).So we can know
the possible extreme points are  x 1 = 1 2 , x 2 = 3 .Therefore the monotone increasing interval is  ( 0 , 1 2 ]  and  [ 3 , + ∞ ) . \text{the possible extreme points are }x_1=\dfrac 12,x_2=3\text{.Therefore the monotone increasing interval is }(0,\dfrac 12]\text{ and }[3,+\infty). the possible extreme points are x1=21,x2=3.Therefore the monotone increasing interval is (0,21] and [3,+).
And the monotone decreasing interval is  [ 1 2 , 3 ] . \text{And the monotone decreasing interval is }[\dfrac 12,3]\text{.} And the monotone decreasing interval is [21,3].

For the second question,It’s obvious that  f ( 2 ) = 2 a − 12 + 3 ln ⁡ 2 ≥ − 6 .It means that  a ≥ 3 − 3 ln ⁡ 2 2 .Therefore the \text{For the second question,It's obvious that }f(2)=2a-12+3\ln 2\geq-6\text{.It means that }a\geq 3-\dfrac{3\ln 2}{2}\text{.Therefore the} For the second question,It’s obvious that f(2)=2a12+3ln26.It means that a323ln2.Therefore the
possible extreme points are  x 1 = 1 2 , x 2 = 3 a .We can prove that : When  a ≤ 6 , ( 3 a , + ∞ )  is a monotone increasing  \text{possible extreme points are }x_1=\dfrac 12,x_2=\dfrac 3a\text{.We can prove that : When }a\leq 6,(\dfrac 3a,+\infty)\text{ is a monotone increasing } possible extreme points are x1=21,x2=a3.We can prove that : When a6,(a3,+) is a monotone increasing 
increasing interval.And when  a > 6 , ( 1 2 , + ∞ )  is a monotone increasing interval.Therefore when  a ≥ 3 − 3 ln ⁡ 2 2 , \text{increasing interval.And when }a>6,(\dfrac 12,+\infty)\text{ is a monotone increasing interval.Therefore when }a\geq 3-\dfrac{3\ln 2}{2}, increasing interval.And when a>6,(21,+) is a monotone increasing interval.Therefore when a323ln2,
( 2 , + ∞ )  must be a monotone increasing interval.Therefore  f ( 3 e ) > f ( 2 ) ≥ − 6 .In conclusion, the real number a  (2,+\infty)\text{ must be a monotone increasing interval.Therefore }f(3e)>f(2)\geq -6\text{.In conclusion, the real number a } (2,+) must be a monotone increasing interval.Therefore f(3e)>f(2)6.In conclusion, the real number a 
should be in the range of  ( 3 − 3 ln ⁡ 2 2 , + ∞ ) . \text{should be in the range of }(3-\dfrac{3\ln 2}{2},+\infty). should be in the range of (323ln2,+).

This is my way to solve the quetion.Look forward to your early reply. \text{This is my way to solve the quetion.Look forward to your early reply.} This is my way to solve the quetion.Look forward to your early reply.

Yours, \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\text{Yours,} Yours,

Li Hua \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\text{Li Hua} Li Hua


文章内解题过程并不严谨,但毕竟是书信,且要求100词左右,所以解题思路明确,语法无误即可。

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 假设有函数$f(x) = \frac{1}{3}x^3 - 2x^2 + 5x - 1$,求$f(x)$的导数。 解: 首先,我们需要知道$f(x)$的各项系数分别为$\frac{1}{3}, -2, 5$和$-1$。然后,我们可以使用导数的定义来求出$f(x)$在任意点$x$处的导数,也就是$f'(x)$: $$ f'(x) = \lim_{h\to0}\frac{f(x+h) - f(x)}{h} $$ 将$f(x)$的表达式代入上式,得到: $$ f'(x) = \lim_{h\to0}\frac{\frac{1}{3}(x+h)^3 - 2(x+h)^2 + 5(x+h) - 1 - \frac{1}{3}x^3 + 2x^2 - 5x + 1}{h} $$ 化简后得到: $$ f'(x) = \lim_{h\to0}\frac{1}{3}h^2 + 2hx -h $$ 将$h$约去后得到: $$ f'(x) = \frac{1}{3}x^2 - 4x + 5 $$ 因此,$f(x)$的导数$f'(x)$为$\frac{1}{3}x^2 - 4x + 5$。 ### 回答2: 假设我们有一个函数f(x) = 2x^3 + 3x^2 - 4x + 1。现在我们要求这个函数的导数。 根据导数的定义,我们可以通过求函数在某一点的斜率来得到导数。在这个例子中,我们将对f(x)进行求导,从而得到它的导函数f'(x)。 首先,我们可以使用幂函数的导数规则来计算每一项的导数。根据该规则,常数项的导数为0,而对于幂函数x^n,导数为nx^(n-1)。 按照这个规则,我们可以计算f(x)中每一项的导数:派生项的系数与指数分别相乘,并降低指数。 f'(x) = 2 * 3x^(3-1) + 3 * 2x^(2-1) - 4 * 1x^(1-1) + 0 简化后得到: f'(x) = 6x^2 + 6x - 4 因此,函数f(x)的导函数f'(x)为6x^2 + 6x - 4。 这个例子展示了用导数规则来求解一个典型的数学导数大题。通过使用幂函数的导数规则,我们能够得到一个函数的导函数。导数数学中有广泛的应用,例如用于求曲线的切线和极值点。 ### 回答3: 假设我们需要求函数f(x) = 2x^3 + 3x^2 - 4x + 1的导数。 首先,我们需要确定导数的定义。导数表示函数在某一点上的变化率,可以通过计算函数的斜率来得到。具体而言,对于函数f(x),它的导数f’(x)表示函数在某一点x上的瞬时变化率。 为了求解f(x)的导数,我们可以使用导数的定义,即计算极限lim(h -> 0) [(f(x+h) - f(x))/h]。这个极限表示了当h趋近于0时,函数在x点附近的平均变化率。 开始计算: f’(x) = lim(h -> 0) [(f(x+h) - f(x))/h] = lim(h -> 0) [(2(x+h)^3 + 3(x+h)^2 - 4(x+h) + 1 - (2x^3 + 3x^2 - 4x + 1))/h] = lim(h -> 0) [(2x^3 + 6x^2h + 6xh^2 + 2h^3 + 3x^2 + 6xh + 3h^2 - 4x - 4h + 1 - 2x^3 - 3x^2 + 4x + 1)/h] = lim(h -> 0) [(6x^2h + 6xh^2 + 2h^3 + 6xh + 3h^2 - 4h)/h] = lim(h -> 0) [6x^2 + 6xh + 2h^2 + 6x + 3h - 4] = 6x^2 + 6x + 6 所以,函数f(x) = 2x^3 + 3x^2 - 4x + 1的导数为f’(x) = 6x^2 + 6x + 6。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值