第一类换元法(凑微分法)

前置知识:直接积分法

第一类换元法(凑微分法)

对于函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)根据复合函数的求导法则,
d d x [ f ( g ( x ) ) ] = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \dfrac{d}{dx}[f(g(x))]=f'(g(x))\cdot g'(x) dxd[f(g(x))]=f(g(x))g(x)

于是
∫ f ′ ( g ( x ) ) ⋅ g ′ ( x ) d x = f ( g ( x ) ) + C \int f'(g(x))\cdot g'(x)dx=f(g(x))+C f(g(x))g(x)dx=f(g(x))+C

u = g ( x ) u=g(x) u=g(x),因为
∫ f ′ ( u ) d x = f ( u ) + C \int f'(u)dx=f(u)+C f(u)dx=f(u)+C

则在求 ∫ f ′ ( g ( x ) ) ⋅ g ′ ( x ) \int f'(g(x))\cdot g'(x) f(g(x))g(x)时,可以将其变换为 ∫ f ′ ( u ) d u \int f'(u)du f(u)du,求出结果 f ( u ) + C f(u)+C f(u)+C后再将 u = g ( x ) u=g(x) u=g(x)代入:
∫ f ′ ( g ( x ) ) ⋅ g ′ ( x ) d x = ∫ f ′ ( u ) d u = f ( u ) + C = f ( g ( x ) ) + C \int f'(g(x))\cdot g'(x)dx=\int f'(u)du=f(u)+C=f(g(x))+C f(g(x))g(x)dx=f(u)du=f(u)+C=f(g(x))+C

这里涉及到一阶微分的形式不变性

以上就是第一类换元法,又称凑微分法。


常见凑微分公式

∫ f ( a x + b ) d x = 1 a f ( a x + b ) d ( a x + b ) \int f(ax+b)dx=\dfrac 1af(ax+b)d(ax+b) f(ax+b)dx=a1f(ax+b)d(ax+b)

∫ f ( a x n + b ) x n − 1 d x = 1 n a ∫ f ( a x n + b ) d ( a x n + b ) \int f(ax^n+b)x^{n-1}dx=\dfrac{1}{na}\int f(ax^n+b)d(ax^n+b) f(axn+b)xn1dx=na1f(axn+b)d(axn+b)

∫ f ( 1 x ) 1 x 2 d x = − ∫ f ( 1 x ) d ( 1 x ) \int f(\dfrac 1x)\dfrac{1}{x^2}dx=-\int f(\dfrac 1x)d(\dfrac 1x) f(x1)x21dx=f(x1)d(x1)

∫ f ( x ) 1 x d x = 2 ∫ f ( x ) d ( x ) \int f(\sqrt x)\dfrac{1}{\sqrt x}dx=2\int f(\sqrt x)d(\sqrt x) f(x )x 1dx=2f(x )d(x )

∫ f ( ln ⁡ x ) 1 x d x = ∫ f ( ln ⁡ x ) d ( ln ⁡ x ) \int f(\ln x)\dfrac 1xdx=\int f(\ln x)d(\ln x) f(lnx)x1dx=f(lnx)d(lnx)

∫ f ( e x ) e x d x = ∫ f ( e x ) d ( e x ) \int f(e^x)e^xdx=\int f(e^x)d(e^x) f(ex)exdx=f(ex)d(ex)

∫ f ( sin ⁡ x ) cos ⁡ x d x = ∫ f ( sin ⁡ x ) d ( sin ⁡ x ) \int f(\sin x)\cos xdx=\int f(\sin x)d(\sin x) f(sinx)cosxdx=f(sinx)d(sinx)

∫ f ( cos ⁡ x ) sin ⁡ x d x = − ∫ f ( cos ⁡ x ) d ( cos ⁡ x ) \int f(\cos x)\sin xdx=-\int f(\cos x)d(\cos x) f(cosx)sinxdx=f(cosx)d(cosx)

∫ f ( tan ⁡ x ) sec ⁡ 2 x d x = ∫ f ( tan ⁡ x ) d ( tan ⁡ x ) \int f(\tan x)\sec^2 xdx=\int f(\tan x)d(\tan x) f(tanx)sec2xdx=f(tanx)d(tanx)

∫ f ( cot ⁡ x ) csc ⁡ 2 x d x = − ∫ f ( cot ⁡ x ) d ( cot ⁡ x ) \int f(\cot x)\csc^2 xdx=-\int f(\cot x)d(\cot x) f(cotx)csc2xdx=f(cotx)d(cotx)

∫ f ( sec ⁡ x ) sec ⁡ x tan ⁡ x d x = ∫ f ( sec ⁡ x ) d ( sec ⁡ x ) \int f(\sec x)\sec x\tan xdx=\int f(\sec x)d(\sec x) f(secx)secxtanxdx=f(secx)d(secx)

∫ f ( csc ⁡ x ) csc ⁡ x cot ⁡ x d x = − ∫ f ( csc ⁡ x ) d ( csc ⁡ x ) \int f(\csc x)\csc x\cot xdx=-\int f(\csc x)d(\csc x) f(cscx)cscxcotxdx=f(cscx)d(cscx)

∫ f ( arcsin ⁡ x ) 1 1 − x 2 d x = ∫ f ( arcsin ⁡ x ) d ( arcsin ⁡ x ) \int f(\arcsin x)\dfrac{1}{\sqrt{1-x^2}}dx=\int f(\arcsin x)d(\arcsin x) f(arcsinx)1x2 1dx=f(arcsinx)d(arcsinx)

∫ f ( arctan ⁡ x ) 1 1 + x 2 d x = ∫ f ( arctan ⁡ x ) d ( arctan ⁡ x ) \int f(\arctan x)\dfrac{1}{1+x^2}dx=\int f(\arctan x)d(\arctan x) f(arctanx)1+x21dx=f(arctanx)d(arctanx)


例题

题1: 计算 ∫ 1 2 x + 1 d x \int \dfrac{1}{\sqrt{2x+1}}dx 2x+1 1dx

解:原式 = ∫ ( 2 x + 1 ) − 1 2 d x = 1 2 ∫ ( 2 x + 1 ) − 1 2 d ( 2 x + 1 ) = ( 2 x + 1 ) 1 2 + C =\int (2x+1)^{-\frac 12}dx=\dfrac 12\int (2x+1)^{-\frac 12}d(2x+1)=(2x+1)^{\frac 12}+C =(2x+1)21dx=21(2x+1)21d(2x+1)=(2x+1)21+C


题2: 计算 ∫ x cos ⁡ ( x 2 + 2 ) d x \int x\cos (x^2+2)dx xcos(x2+2)dx

解:原式 = 1 2 ∫ cos ⁡ ( x 2 + 2 ) d ( x 2 + 2 ) = 1 2 sin ⁡ ( x 2 + 2 ) + C =\dfrac 12\int \cos(x^2+2)d(x^2+2)=\dfrac 12\sin(x^2+2)+C =21cos(x2+2)d(x2+2)=21sin(x2+2)+C


总结

常见凑微分公式并不需要背,只要掌握技巧,这些都是可以推出来的。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一元函数积分学中常考的微分是一种通过巧妙的代将被积函数转化成更易积分的形式的方。具体来说,微分常用于以下两种情况: 1. 被积函数中含有若干项的乘积,其中某些项的微分形式与整个被积函数相同或与其他项的微分形式相同,但是某些项的微分形式又与整个被积函数不同。此时,我们可以通过代将这些微分形式相同或相似的项合并在一起,从而得到更易积分的形式。 例如,对于形如 $\int x\sqrt{1-x^2}\mathrm{d}x$ 的积分,我们可以令 $u=1-x^2$,则 $\mathrm{d}u=-2x\mathrm{d}x$,从而原积分可以转化为 $\int -\frac{1}{2}\sqrt{u}\mathrm{d}u$,最后再通过简单的换元即可求解。 2. 被积函数中含有若干项的和,其中某些项可以表示为其他项的导数形式。此时,我们可以通过分部积分将这些项分离出来,从而得到更易积分的形式。 例如,对于形如 $\int xe^x\mathrm{d}x$ 的积分,我们可以将其看作是 $\int x\mathrm{d}(e^x)$ 的形式,从而可以利用分部积分公式将其拆分为 $xe^x-\int e^x\mathrm{d}x$ 的形式,最后再通过简单的求导即可得到积分的结果。 需要注意的是,微分虽然在某些情况下可以简化积分的过程,但是也存在一些风险。例如,如果代不当或者分部积分的选择不合适,可能会导致积分结果的错误或者复杂度的增加。因此,在使用微分时,需要仔细分析被积函数的形式,并且在实践中多加练习,才能熟练掌握这种技巧。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值