导数求函数最大值和最小值习题

前置知识:导数求函数最大值和最小值

例1

f ( x ) = ∣ x 2 − 3 x + 2 ∣ f(x)=|x^2-3x+2| f(x)=x23x+2,求 f ( x ) f(x) f(x) [ − 10 , 10 ] [-10,10] [10,10]上的最值。

解:

\qquad x ∈ [ − 10 , 1 ) ∪ [ 2 , 10 ] x\in[-10,1)\cup[2,10] x[10,1)[2,10]时, f ( x ) = x 2 − 3 x + 2 f(x)=x^2-3x+2 f(x)=x23x+2 f ′ ( x ) = 2 x − 3 f'(x)=2x-3 f(x)=2x3

\qquad 在范围内没有可能的极值点

f ( − 10 ) = 132 , f ( 2 ) = 0 , f ( 10 ) = 72 \qquad f(-10)=132,f(2)=0,f(10)=72 f(10)=132,f(2)=0,f(10)=72

\qquad x ∈ [ 1 , 2 ) x\in[1,2) x[1,2)时, f ( x ) = − x 2 + 3 x − 2 f(x)=-x^2+3x-2 f(x)=x2+3x2 f ′ ( x ) = − 2 x + 3 f'(x)=-2x+3 f(x)=2x+3

\qquad 可能的极值点: x = 3 2 x=\dfrac 32 x=23

f ( 3 2 ) = 1 4 , f ( 1 ) = 0 \qquad f(\dfrac 32)=\dfrac 14,f(1)=0 f(23)=41,f(1)=0

\qquad 综上所述,最大值为 132 132 132,最小值为 0 0 0


例2

f ( x ) = x ln ⁡ x f(x)=\sqrt{x}\ln x f(x)=x lnx的最值。

解:
\qquad 定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) f ′ ( x ) = ln ⁡ x 2 x + x x = ( ln ⁡ x + 2 ) x 2 x f'(x)=\dfrac{\ln x}{2\sqrt{x}}+\dfrac{\sqrt{x}}{x}=\dfrac{(\ln x+2)\sqrt{x}}{2x} f(x)=2x lnx+xx =2x(lnx+2)x

\qquad 可能的极值点: x = e − 2 x=e^{-2} x=e2

f ( e − 2 ) = − 2 e − 1 \qquad f(e^{-2})=-2e^{-1} f(e2)=2e1

\qquad 所以函数的最小值为 − 2 e − 1 -2e^{-1} 2e1


总结

  • 求区间内最大值时不要漏掉两端端点(如果可以取到的话)
  • 函数的极值不一定是最值,区间的最值不一定是极值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值