洛谷P2257 YY的GCD

洛谷P2257 YY的GCD

题目大意:求有多少数对 ( x , y ) (x,y) (x,y) ( 1 < = x < = n , 1 < = y < = m ) (1<=x<=n,1<=y<=m) (1<=x<=n,1<=y<=m)满足 g c d ( x , y ) gcd(x,y) gcd(x,y)为质数。

此题需要用到莫比乌斯反演

题意即求

∑ k = 1 n ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = = k ] ( k ∈ p r i m e ) \sum\limits^n_{k=1}\sum\limits^n_{i=1}\sum\limits^m_{j=1}[gcd(i,j)==k]\qquad(k\in prime) k=1ni=1nj=1m[gcd(i,j)==k](kprime)

两边同时除以 k k k,将 [ g c d ( i , j ) = = k ] [gcd(i,j)==k] [gcd(i,j)==k]化成 [ g c d ( i , j ) = = 1 ] [gcd(i,j)==1] [gcd(i,j)==1]

∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ [ g c d ( i , j ) = = 1 ] ( k ∈ p r i m e ) \sum\limits^n_{k=1}\sum\limits^{⌊\frac{n}{k}⌋}_{i=1}\sum\limits^{⌊\frac{m}{k}⌋}_{j=1}[gcd(i,j)==1]\qquad(k\in prime) k=1ni=1knj=1km[gcd(i,j)==1](kprime)

我们知道莫比乌斯函数的性质

∑ d ∣ n μ ( d ) = [ n = = 1 ] \sum\limits_{d|n}μ(d)=[n==1] dnμ(d)=[n==1]

我们把 n n n换成 g c d ( i , j ) gcd(i,j) gcd(i,j),得 [ g c d ( i , j ) = = 1 ] = ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)==1]=\sum\limits_{d|gcd(i,j)}μ(d) [gcd(i,j)==1]=dgcd(i,j)μ(d)

原式变为

∑ k = 1 n ∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ m k ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) ( k ∈ p r i m e ) \sum\limits^n_{k=1}\sum\limits^{⌊\frac{n}{k}⌋}_{i=1}\sum\limits^{⌊\frac{m}{k}⌋}_{j=1}\sum\limits_{d|gcd(i,j)}μ(d)\qquad(k\in prime) k=1ni=1knj=1kmdgcd(i,j)μ(d)(kprime)

枚举 d d d

∑ k = 1 n ∑ d = 1 ⌊ n k ⌋ μ ( d ) ∗ ⌊ n k d ⌋ ∗ ⌊ m k d ⌋ ( k ∈ p r i m e ) \sum\limits^n_{k=1}\sum\limits^{⌊\frac{n}{k}⌋}_{d=1}μ(d)*⌊\frac{n}{kd}⌋*⌊\frac{m}{kd}⌋\qquad(k\in prime) k=1nd=1knμ(d)kdnkdm(kprime)

T = k d T=kd T=kd,有

∑ k = 1 n ∑ d = 1 ⌊ n k ⌋ μ ( d ) ∗ ⌊ n T ⌋ ∗ ⌊ m T ⌋ ( k ∈ p r i m e ) \sum\limits^n_{k=1}\sum\limits^{⌊\frac{n}{k}⌋}_{d=1}μ(d)*⌊\frac{n}{T}⌋*⌊\frac{m}{T}⌋\qquad(k\in prime) k=1nd=1knμ(d)TnTm(kprime)

枚举 T T T,提到前面

∑ T = 1 n ⌊ n T ⌋ ∗ ⌊ m T ⌋ ∑ k ∣ T , k ∈ p r i m e μ ( T k ) \sum\limits^n_{T=1}⌊\frac{n}{T}⌋*⌊\frac{m}{T}⌋\sum\limits_{k|T,k\in prime}μ(\frac{T}{k}) T=1nTnTmkT,kprimeμ(kT)

数论分块处理即可,时间复杂度为 O ( n ln ⁡ n + T n ) O(n\ln n+T\sqrt n) O(nlnn+Tn )

code

#include<bits/stdc++.h>
#define N 10000000
using namespace std;
int t,n,m,fl[N+5],p[N+5],mu[N+5],f[N+5];
long long ans,sum[N+5];
void dd(){
    mu[1]=1;
    for(int i=2;i<=N;i++){
        if(!fl[i]){
            p[++p[0]]=i;mu[i]=-1;
        }
        for(int j=1;j<=p[0]&&i*p[j]<=N;j++){
            fl[i*p[j]]=1;
            if(i%p[j]==0){
            	mu[i*p[j]]=0;
            	break;
            }
            mu[i*p[j]]=-mu[i];
        }
    }
    for(int i=1;i<=p[0];i++){
        for(int j=1;p[i]*j<=N;j++){
            f[p[i]*j]+=mu[j];
        }
    }
    for(int i=1;i<=N;i++){
        sum[i]=sum[i-1]+f[i];
    }
}
void ss(){
    ans=0;
    for(int l=1,r=0;l<=n;l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans+=(sum[r]-sum[l-1])*(n/l)*(m/l);
    }
}
int main()
{
    dd();
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        if(n>m) swap(n,m);
        ss();
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值