前置知识:直接积分法
第二类换元法简介
在求
∫
f
(
x
)
d
x
\int f(x)dx
∫f(x)dx时,若不好求,则我们可以令
x
=
φ
(
t
)
x=\varphi(t)
x=φ(t),则
∫
f
(
x
)
d
x
=
∫
f
(
φ
(
t
)
)
d
(
φ
(
t
)
)
=
∫
f
(
φ
(
t
)
)
φ
′
(
t
)
d
t
\int f(x)dx=\int f(\varphi(t))d(\varphi(t))=\int f(\varphi(t))\varphi'(t)dt
∫f(x)dx=∫f(φ(t))d(φ(t))=∫f(φ(t))φ′(t)dt
这里涉及到一阶微分形式不变性。
以上就是第二类换元法。在积分式 ∫ f ( x ) d x \int f(x)dx ∫f(x)dx比较复杂的情况下,可以用第二类换元法进行变换。
以下是几种代换方法。
三角代换
若被积函数含有二次根式,通常用三角换元,一般的三角换元如下:
- a 2 − x 2 \sqrt{a^2-x^2} a2−x2型:令 x = a sin t x=a\sin t x=asint
- a 2 + x 2 \sqrt{a^2+x^2} a2+x2型:令 x = a tan t x=a\tan t x=atant
- x 2 − a 2 \sqrt{x^2-a^2} x2−a2型:令 x = a sec t x=a\sec t x=asect
可以通过画直角三角形来帮助理解。
三角代换的例题
题1: 计算 ∫ a 2 − x 2 d x \int \sqrt{a^2-x^2}dx ∫a2−x2dx, ( a > 0 ) (a>0) (a>0)
解:
\qquad
令
x
=
a
sin
t
x=a\sin t
x=asint,
t
=
arcsin
x
a
t=\arcsin \dfrac xa
t=arcsinax,
d
x
=
a
cos
t
d
t
dx=a\cos tdt
dx=acostdt
\qquad 原式 = ∫ a cos t ⋅ a cos t d t = a 2 ∫ cos 2 t d t =\int a\cos t\cdot a\cos t dt=a^2\int\cos^2tdt =∫acost⋅acostdt=a2∫cos2tdt
= a 2 ∫ 1 2 ( 1 + cos 2 t ) d t = a 2 2 ∫ ( 1 + cos 2 t ) d t \qquad\qquad =a^2\int \dfrac 12(1+\cos 2t)dt=\dfrac{a^2}{2}\int (1+\cos 2t)dt =a2∫21(1+cos2t)dt=2a2∫(1+cos2t)dt
= a 2 2 ( t + 1 2 sin 2 t ) + C = a 2 2 t + a 2 2 sin t cos t + C \qquad\qquad =\dfrac{a^2}{2}(t+\dfrac 12\sin 2t)+C=\dfrac{a^2}{2}t+\dfrac{a^2}{2}\sin t\cos t+C =2a2(t+21sin2t)+C=2a2t+2a2sintcost+C
= a 2 2 arcsin x a + a 2 2 ⋅ x a ⋅ a 2 − x 2 a + C \qquad\qquad =\dfrac{a^2}{2}\arcsin \dfrac xa+\dfrac{a^2}{2}\cdot \dfrac xa\cdot \dfrac{\sqrt{a^2-x^2}}{a}+C =2a2arcsinax+2a2⋅ax⋅aa2−x2+C
= a 2 2 arcsin x a + 1 2 x a 2 − x 2 + C \qquad\qquad =\dfrac{a^2}{2}\arcsin \dfrac xa+\dfrac 12x\sqrt{a^2-x^2}+C =2a2arcsinax+21xa2−x2+C
题2: 计算 ∫ 1 ( x 2 + 1 ) 3 d x \int \dfrac{1}{\sqrt{(x^2+1)^3}}dx ∫(x2+1)31dx
解:
\qquad
令
x
=
tan
t
x=\tan t
x=tant,
t
=
arctan
x
t=\arctan x
t=arctanx,
d
x
=
sec
2
t
d
t
dx=\sec^2tdt
dx=sec2tdt
\qquad 原式 = ∫ 1 sec 3 t ⋅ sec 2 t d t = ∫ cos t d t = sin t + C = x x 2 + 1 + C =\int\dfrac{1}{\sec^3 t}\cdot \sec^2 tdt=\int\cos tdt=\sin t+C=\dfrac{x}{\sqrt{x^2+1}}+C =∫sec3t1⋅sec2tdt=∫costdt=sint+C=x2+1x+C
当 x = tan t x=\tan t x=tant时, x 2 + 1 = tan 2 t + 1 = sin 2 t cos 2 t + 1 = sin 2 t + cos 2 t cos 2 t = 1 cos 2 t = sec 2 t x^2+1=\tan^2 t+1=\dfrac{\sin^2 t}{\cos^2 t}+1=\dfrac{\sin^2 t+\cos^2 t}{\cos^2 t}=\dfrac{1}{\cos^2 t}=\sec^2t x2+1=tan2t+1=cos2tsin2t+1=cos2tsin2t+cos2t=cos2t1=sec2t
幂代换
被积函数含有 a x + b n \sqrt[n]{ax+b} nax+b或 a x + b c x + d n \sqrt[n]{\dfrac{ax+b}{cx+d}} ncx+dax+b时,通常用幂代换。
幂代换的例题
题1: 计算
∫
1
1
+
2
x
d
x
\int \dfrac{1}{1+\sqrt{2x}}dx
∫1+2x1dx
解:
\qquad
令
2
x
=
t
\sqrt{2x}=t
2x=t,
x
=
1
2
t
2
x=\dfrac 12t^2
x=21t2,
d
x
=
t
d
t
dx=tdt
dx=tdt
\qquad 原式 = ∫ 1 1 + t ⋅ t d t = ∫ t 1 + t d t = ∫ ( 1 − 1 1 + t ) d t =\int\dfrac{1}{1+t}\cdot tdt=\int\dfrac{t}{1+t}dt=\int(1-\dfrac{1}{1+t})dt =∫1+t1⋅tdt=∫1+ttdt=∫(1−1+t1)dt
= t − ln ∣ 1 + t ∣ + C = 2 x + ln ∣ 1 + 2 x ∣ + C \qquad\qquad =t-\ln|1+t|+C=\sqrt{2x}+\ln|1+\sqrt{2x}|+C =t−ln∣1+t∣+C=2x+ln∣1+2x∣+C
倒代换
当分子和分母的幂次相差大于等于 2 2 2时,通常用 x = 1 t x=\dfrac 1t x=t1替换。
倒代换例题
题1: 计算
∫
1
x
4
(
x
2
+
1
)
d
x
\int \dfrac{1}{x^4(x^2+1)}dx
∫x4(x2+1)1dx
解:
\qquad
令
x
=
1
t
x=\dfrac 1t
x=t1,
t
=
1
x
t=\dfrac 1x
t=x1,
d
x
=
−
1
t
2
d
t
dx=-\dfrac{1}{t^2}dt
dx=−t21dt
\qquad 原式 = ∫ 1 1 t 4 ( 1 t 2 + 1 ) ⋅ ( − 1 t 2 ) d t =\int\dfrac{1}{\frac{1}{t^4}(\frac{1}{t^2}+1)}\cdot(-\dfrac{1}{t^2})dt =∫t41(t21+1)1⋅(−t21)dt
= − ∫ t 4 1 + t 2 d t = − ∫ ( t 2 − 1 + 1 1 + t 2 ) d t \qquad\qquad =-\int\dfrac{t^4}{1+t^2}dt=-\int(t^2-1+\dfrac{1}{1+t^2})dt =−∫1+t2t4dt=−∫(t2−1+1+t21)dt
= − 1 3 t 2 + t − arctan t + C = − 1 3 x 2 + 1 x − arctan 1 x + C \qquad\qquad =-\dfrac 13t^2+t-\arctan t+C=-\dfrac{1}{3x^2}+\dfrac 1x-\arctan \dfrac 1x+C =−31t2+t−arctant+C=−3x21+x1−arctanx1+C
指数代换
由 e x e^x ex或 e − x e^{-x} e−x构成的北被积函数,通常用 t = e x t=e^x t=ex替换。
指数代换例题
题1:
∫
1
1
+
e
x
d
x
\int \dfrac{1}{1+e^x}dx
∫1+ex1dx
解:
\qquad
令
t
=
e
x
t=e^x
t=ex,
x
=
ln
t
x=\ln t
x=lnt,
d
x
=
1
t
d
t
dx=\dfrac 1tdt
dx=t1dt
\qquad 原式 = ∫ 1 1 + t ⋅ 1 t d t = ∫ ( 1 t − 1 1 + t ) d t = ln ∣ t ∣ − ln ∣ t + 1 ∣ + C = x − ln ( e x + 1 ) + C =\int\dfrac{1}{1+t}\cdot \dfrac 1tdt=\int(\dfrac 1t-\dfrac{1}{1+t})dt=\ln|t|-\ln|t+1|+C=x-\ln (e^x+1)+C =∫1+t1⋅t1dt=∫(t1−1+t1)dt=ln∣t∣−ln∣t+1∣+C=x−ln(ex+1)+C
总结
在遇到比较复杂的积分题时,注意根据被积函数的特性来运用第二类换元法,最后要记得换回来。