第二类换元法

文章介绍了在解决复杂积分问题时使用的第二类换元法,包括三角代换、幂代换、倒代换和指数代换等策略,并通过具体例题展示了如何运用这些方法简化积分计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识:直接积分法

第二类换元法简介

在求 ∫ f ( x ) d x \int f(x)dx f(x)dx时,若不好求,则我们可以令 x = φ ( t ) x=\varphi(t) x=φ(t),则
∫ f ( x ) d x = ∫ f ( φ ( t ) ) d ( φ ( t ) ) = ∫ f ( φ ( t ) ) φ ′ ( t ) d t \int f(x)dx=\int f(\varphi(t))d(\varphi(t))=\int f(\varphi(t))\varphi'(t)dt f(x)dx=f(φ(t))d(φ(t))=f(φ(t))φ(t)dt

这里涉及到一阶微分形式不变性

以上就是第二类换元法。在积分式 ∫ f ( x ) d x \int f(x)dx f(x)dx比较复杂的情况下,可以用第二类换元法进行变换。

以下是几种代换方法。


三角代换

若被积函数含有二次根式,通常用三角换元,一般的三角换元如下:

  • a 2 − x 2 \sqrt{a^2-x^2} a2x2 型:令 x = a sin ⁡ t x=a\sin t x=asint
  • a 2 + x 2 \sqrt{a^2+x^2} a2+x2 型:令 x = a tan ⁡ t x=a\tan t x=atant
  • x 2 − a 2 \sqrt{x^2-a^2} x2a2 型:令 x = a sec ⁡ t x=a\sec t x=asect

可以通过画直角三角形来帮助理解。

三角代换的例题

题1: 计算 ∫ a 2 − x 2 d x \int \sqrt{a^2-x^2}dx a2x2 dx ( a > 0 ) (a>0) (a>0)

解:
\qquad x = a sin ⁡ t x=a\sin t x=asint t = arcsin ⁡ x a t=\arcsin \dfrac xa t=arcsinax d x = a cos ⁡ t d t dx=a\cos tdt dx=acostdt

\qquad 原式 = ∫ a cos ⁡ t ⋅ a cos ⁡ t d t = a 2 ∫ cos ⁡ 2 t d t =\int a\cos t\cdot a\cos t dt=a^2\int\cos^2tdt =acostacostdt=a2cos2tdt

= a 2 ∫ 1 2 ( 1 + cos ⁡ 2 t ) d t = a 2 2 ∫ ( 1 + cos ⁡ 2 t ) d t \qquad\qquad =a^2\int \dfrac 12(1+\cos 2t)dt=\dfrac{a^2}{2}\int (1+\cos 2t)dt =a221(1+cos2t)dt=2a2(1+cos2t)dt

= a 2 2 ( t + 1 2 sin ⁡ 2 t ) + C = a 2 2 t + a 2 2 sin ⁡ t cos ⁡ t + C \qquad\qquad =\dfrac{a^2}{2}(t+\dfrac 12\sin 2t)+C=\dfrac{a^2}{2}t+\dfrac{a^2}{2}\sin t\cos t+C =2a2(t+21sin2t)+C=2a2t+2a2sintcost+C

= a 2 2 arcsin ⁡ x a + a 2 2 ⋅ x a ⋅ a 2 − x 2 a + C \qquad\qquad =\dfrac{a^2}{2}\arcsin \dfrac xa+\dfrac{a^2}{2}\cdot \dfrac xa\cdot \dfrac{\sqrt{a^2-x^2}}{a}+C =2a2arcsinax+2a2axaa2x2 +C

= a 2 2 arcsin ⁡ x a + 1 2 x a 2 − x 2 + C \qquad\qquad =\dfrac{a^2}{2}\arcsin \dfrac xa+\dfrac 12x\sqrt{a^2-x^2}+C =2a2arcsinax+21xa2x2 +C


题2: 计算 ∫ 1 ( x 2 + 1 ) 3 d x \int \dfrac{1}{\sqrt{(x^2+1)^3}}dx (x2+1)3 1dx

解:
\qquad x = tan ⁡ t x=\tan t x=tant t = arctan ⁡ x t=\arctan x t=arctanx d x = sec ⁡ 2 t d t dx=\sec^2tdt dx=sec2tdt

\qquad 原式 = ∫ 1 sec ⁡ 3 t ⋅ sec ⁡ 2 t d t = ∫ cos ⁡ t d t = sin ⁡ t + C = x x 2 + 1 + C =\int\dfrac{1}{\sec^3 t}\cdot \sec^2 tdt=\int\cos tdt=\sin t+C=\dfrac{x}{\sqrt{x^2+1}}+C =sec3t1sec2tdt=costdt=sint+C=x2+1 x+C

x = tan ⁡ t x=\tan t x=tant时, x 2 + 1 = tan ⁡ 2 t + 1 = sin ⁡ 2 t cos ⁡ 2 t + 1 = sin ⁡ 2 t + cos ⁡ 2 t cos ⁡ 2 t = 1 cos ⁡ 2 t = sec ⁡ 2 t x^2+1=\tan^2 t+1=\dfrac{\sin^2 t}{\cos^2 t}+1=\dfrac{\sin^2 t+\cos^2 t}{\cos^2 t}=\dfrac{1}{\cos^2 t}=\sec^2t x2+1=tan2t+1=cos2tsin2t+1=cos2tsin2t+cos2t=cos2t1=sec2t


幂代换

被积函数含有 a x + b n \sqrt[n]{ax+b} nax+b a x + b c x + d n \sqrt[n]{\dfrac{ax+b}{cx+d}} ncx+dax+b 时,通常用幂代换。

幂代换的例题

题1: 计算 ∫ 1 1 + 2 x d x \int \dfrac{1}{1+\sqrt{2x}}dx 1+2x 1dx
解:
\qquad 2 x = t \sqrt{2x}=t 2x =t x = 1 2 t 2 x=\dfrac 12t^2 x=21t2 d x = t d t dx=tdt dx=tdt

\qquad 原式 = ∫ 1 1 + t ⋅ t d t = ∫ t 1 + t d t = ∫ ( 1 − 1 1 + t ) d t =\int\dfrac{1}{1+t}\cdot tdt=\int\dfrac{t}{1+t}dt=\int(1-\dfrac{1}{1+t})dt =1+t1tdt=1+ttdt=(11+t1)dt

= t − ln ⁡ ∣ 1 + t ∣ + C = 2 x + ln ⁡ ∣ 1 + 2 x ∣ + C \qquad\qquad =t-\ln|1+t|+C=\sqrt{2x}+\ln|1+\sqrt{2x}|+C =tln∣1+t+C=2x +ln∣1+2x +C


倒代换

当分子和分母的幂次相差大于等于 2 2 2时,通常用 x = 1 t x=\dfrac 1t x=t1替换。

倒代换例题

题1: 计算 ∫ 1 x 4 ( x 2 + 1 ) d x \int \dfrac{1}{x^4(x^2+1)}dx x4(x2+1)1dx
解:
\qquad x = 1 t x=\dfrac 1t x=t1 t = 1 x t=\dfrac 1x t=x1 d x = − 1 t 2 d t dx=-\dfrac{1}{t^2}dt dx=t21dt

\qquad 原式 = ∫ 1 1 t 4 ( 1 t 2 + 1 ) ⋅ ( − 1 t 2 ) d t =\int\dfrac{1}{\frac{1}{t^4}(\frac{1}{t^2}+1)}\cdot(-\dfrac{1}{t^2})dt =t41(t21+1)1(t21)dt

= − ∫ t 4 1 + t 2 d t = − ∫ ( t 2 − 1 + 1 1 + t 2 ) d t \qquad\qquad =-\int\dfrac{t^4}{1+t^2}dt=-\int(t^2-1+\dfrac{1}{1+t^2})dt =1+t2t4dt=(t21+1+t21)dt

= − 1 3 t 2 + t − arctan ⁡ t + C = − 1 3 x 2 + 1 x − arctan ⁡ 1 x + C \qquad\qquad =-\dfrac 13t^2+t-\arctan t+C=-\dfrac{1}{3x^2}+\dfrac 1x-\arctan \dfrac 1x+C =31t2+tarctant+C=3x21+x1arctanx1+C


指数代换

e x e^x ex e − x e^{-x} ex构成的北被积函数,通常用 t = e x t=e^x t=ex替换。

指数代换例题

题1: ∫ 1 1 + e x d x \int \dfrac{1}{1+e^x}dx 1+ex1dx
解:
\qquad t = e x t=e^x t=ex x = ln ⁡ t x=\ln t x=lnt d x = 1 t d t dx=\dfrac 1tdt dx=t1dt

\qquad 原式 = ∫ 1 1 + t ⋅ 1 t d t = ∫ ( 1 t − 1 1 + t ) d t = ln ⁡ ∣ t ∣ − ln ⁡ ∣ t + 1 ∣ + C = x − ln ⁡ ( e x + 1 ) + C =\int\dfrac{1}{1+t}\cdot \dfrac 1tdt=\int(\dfrac 1t-\dfrac{1}{1+t})dt=\ln|t|-\ln|t+1|+C=x-\ln (e^x+1)+C =1+t1t1dt=(t11+t1)dt=lntlnt+1∣+C=xln(ex+1)+C


总结

在遇到比较复杂的积分题时,注意根据被积函数的特性来运用第二类换元法,最后要记得换回来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值