导数大题练习

已知函数 f ( x ) = x + a ln ⁡ x f(x)=x+a\ln x f(x)=x+alnx,其中 a a a为常数,且 a ≤ − 1 a\leq-1 a1
(1)当 a = − 1 a=-1 a=1时,求 f ( x ) f(x) f(x) [ e , e 2 ] [e,e^2] [e,e2]上的值域。
(2)若 f ( x ) ≤ e − 1 f(x)\leq e-1 f(x)e1对任意 x ∈ [ e , e 2 ] x\in[e,e^2] x[e,e2]恒成立,求实数 a a a的取值范围。

解:
\qquad (1)当 a = − 1 a=-1 a=1时, f ( x ) = x − ln ⁡ x f(x)=x-\ln x f(x)=xlnx f ′ ( x ) = 1 − 1 x f'(x)=1-\dfrac 1x f(x)=1x1

\qquad x > 1 x>1 x>1时, f ′ ( x ) = 1 − 1 x > 0 f'(x)=1-\dfrac 1x>0 f(x)=1x1>0,所以函数在 ( 1 , + ∞ ) (1,+\infty) (1,+)上是增函数

\qquad 所以函数 f ( x ) f(x) f(x) [ e , e 2 ] [e,e^2] [e,e2]上是增函数

f ( e ) = e − 1 \qquad f(e)=e-1 f(e)=e1 f ( e 2 ) = e 2 − 2 f(e^2)=e^2-2 f(e2)=e22,所以 f ( x ) f(x) f(x) [ e , e 2 ] [e,e^2] [e,e2]上的值域为 [ e − 1 , e 2 − 2 ] [e-1,e^2-2] [e1,e22]

\qquad (2) f ′ ( x ) = 1 + a x f'(x)=1+\dfrac ax f(x)=1+xa,可能的极值点: x = − a x=-a x=a

\qquad x ∈ ( 0 , − a ) x\in(0,-a) x(0,a)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ( x ) f(x) f(x)单调递减

\qquad x ∈ ( − a , + ∞ ) x\in(-a,+\infty) x(a,+)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递增

\qquad ①若 1 ≤ − a ≤ e 1\leq -a\leq e 1ae,即 − e ≤ a ≤ − 1 -e\leq a\leq -1 ea1,则 f ( x ) f(x) f(x) [ e , e 2 ] [e,e^2] [e,e2]上是增函数

\qquad x = e 2 x=e^2 x=e2时, f ( x ) f(x) f(x)取最大值

\qquad 所以 f ( e 2 ) ≤ e − 1 f(e^2)\leq e-1 f(e2)e1时满足条件,即 e 2 + 2 a ≤ e − 1 e^2+2a\leq e-1 e2+2ae1 a ≤ − e 2 + e − 1 2 a\leq \dfrac{-e^2+e-1}{2} a2e2+e1

\qquad − e 2 + e − 1 2 − ( − e ) = − e 2 + 3 e − 1 2 < 0 \dfrac{-e^2+e-1}{2}-(-e)=\dfrac{-e^2+3e-1}{2}<0 2e2+e1(e)=2e2+3e1<0,所以 − e 2 + e − 1 2 < e \dfrac{-e^2+e-1}{2}<e 2e2+e1<e,无解

\qquad ②若 e < − a < e 2 e<-a<e^2 e<a<e2,即 − e 2 < a < − e -e^2<a<-e e2<a<e f ( x ) f(x) f(x) [ e , − a ] [e,-a] [e,a]上为减函数,在 [ − a , e 2 ] [-a,e^2] [a,e2]上为增函数

\qquad 若要满足条件,则 { f ( e ) ≤ e − 1 f ( e 2 ) ≤ e − 1 \left\{\begin{matrix} f(e)\leq e-1 \\ f(e^2)\leq e-1 \end{matrix}\right. {f(e)e1f(e2)e1,即 { a ≤ − 1 a ≤ − e 2 + e − 1 2 \left\{\begin{matrix} a\leq -1 \\ a\leq \dfrac{-e^2+e-1}{2} \end{matrix}\right. a1a2e2+e1

\qquad 由此可得 − e 2 < a ≤ − e 2 + e − 1 2 -e^2< a\leq \dfrac{-e^2+e-1}{2} e2<a2e2+e1

\qquad ③若 − a ≥ e 2 -a\geq e^2 ae2,即 a ≤ − e 2 a\leq -e^2 ae2,则 f ( x ) f(x) f(x) [ e , e 2 ] [e,e^2] [e,e2]上为减函数

\qquad x = e x=e x=e时, f ( x ) f(x) f(x)取最大值

\qquad 所以 f ( e ) ≤ e − 1 f(e)\leq e-1 f(e)e1时满足条件,即 e + a ≤ e − 1 e+a\leq e-1 e+ae1 a ≤ − 1 a\leq -1 a1

\qquad 所以 a ≤ − e 2 a\leq -e^2 ae2

\qquad 综上所述, a a a的取值范围是 ( − ∞ , − e 2 + e − 1 2 ] (-\infty,\dfrac{-e^2+e-1}{2}] (,2e2+e1]


总结

此题用到了导数求函数的单调性与极值的知识点来解题,通过分类讨论求解,是比较常规的题型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值