已知函数
f
(
x
)
=
x
+
a
ln
x
f(x)=x+a\ln x
f(x)=x+alnx,其中
a
a
a为常数,且
a
≤
−
1
a\leq-1
a≤−1
(1)当
a
=
−
1
a=-1
a=−1时,求
f
(
x
)
f(x)
f(x)在
[
e
,
e
2
]
[e,e^2]
[e,e2]上的值域。
(2)若
f
(
x
)
≤
e
−
1
f(x)\leq e-1
f(x)≤e−1对任意
x
∈
[
e
,
e
2
]
x\in[e,e^2]
x∈[e,e2]恒成立,求实数
a
a
a的取值范围。
解:
\qquad
(1)当
a
=
−
1
a=-1
a=−1时,
f
(
x
)
=
x
−
ln
x
f(x)=x-\ln x
f(x)=x−lnx,
f
′
(
x
)
=
1
−
1
x
f'(x)=1-\dfrac 1x
f′(x)=1−x1
\qquad 当 x > 1 x>1 x>1时, f ′ ( x ) = 1 − 1 x > 0 f'(x)=1-\dfrac 1x>0 f′(x)=1−x1>0,所以函数在 ( 1 , + ∞ ) (1,+\infty) (1,+∞)上是增函数
\qquad 所以函数 f ( x ) f(x) f(x)在 [ e , e 2 ] [e,e^2] [e,e2]上是增函数
f ( e ) = e − 1 \qquad f(e)=e-1 f(e)=e−1, f ( e 2 ) = e 2 − 2 f(e^2)=e^2-2 f(e2)=e2−2,所以 f ( x ) f(x) f(x)在 [ e , e 2 ] [e,e^2] [e,e2]上的值域为 [ e − 1 , e 2 − 2 ] [e-1,e^2-2] [e−1,e2−2]
\qquad (2) f ′ ( x ) = 1 + a x f'(x)=1+\dfrac ax f′(x)=1+xa,可能的极值点: x = − a x=-a x=−a
\qquad 当 x ∈ ( 0 , − a ) x\in(0,-a) x∈(0,−a)时, f ′ ( x ) < 0 f'(x)<0 f′(x)<0, f ( x ) f(x) f(x)单调递减
\qquad 当 x ∈ ( − a , + ∞ ) x\in(-a,+\infty) x∈(−a,+∞)时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) f(x) f(x)单调递增
\qquad ①若 1 ≤ − a ≤ e 1\leq -a\leq e 1≤−a≤e,即 − e ≤ a ≤ − 1 -e\leq a\leq -1 −e≤a≤−1,则 f ( x ) f(x) f(x)在 [ e , e 2 ] [e,e^2] [e,e2]上是增函数
\qquad 当 x = e 2 x=e^2 x=e2时, f ( x ) f(x) f(x)取最大值
\qquad 所以 f ( e 2 ) ≤ e − 1 f(e^2)\leq e-1 f(e2)≤e−1时满足条件,即 e 2 + 2 a ≤ e − 1 e^2+2a\leq e-1 e2+2a≤e−1, a ≤ − e 2 + e − 1 2 a\leq \dfrac{-e^2+e-1}{2} a≤2−e2+e−1
\qquad 而 − e 2 + e − 1 2 − ( − e ) = − e 2 + 3 e − 1 2 < 0 \dfrac{-e^2+e-1}{2}-(-e)=\dfrac{-e^2+3e-1}{2}<0 2−e2+e−1−(−e)=2−e2+3e−1<0,所以 − e 2 + e − 1 2 < e \dfrac{-e^2+e-1}{2}<e 2−e2+e−1<e,无解
\qquad ②若 e < − a < e 2 e<-a<e^2 e<−a<e2,即 − e 2 < a < − e -e^2<a<-e −e2<a<−e, f ( x ) f(x) f(x)在 [ e , − a ] [e,-a] [e,−a]上为减函数,在 [ − a , e 2 ] [-a,e^2] [−a,e2]上为增函数
\qquad 若要满足条件,则 { f ( e ) ≤ e − 1 f ( e 2 ) ≤ e − 1 \left\{\begin{matrix} f(e)\leq e-1 \\ f(e^2)\leq e-1 \end{matrix}\right. {f(e)≤e−1f(e2)≤e−1,即 { a ≤ − 1 a ≤ − e 2 + e − 1 2 \left\{\begin{matrix} a\leq -1 \\ a\leq \dfrac{-e^2+e-1}{2} \end{matrix}\right. ⎩ ⎨ ⎧a≤−1a≤2−e2+e−1
\qquad 由此可得 − e 2 < a ≤ − e 2 + e − 1 2 -e^2< a\leq \dfrac{-e^2+e-1}{2} −e2<a≤2−e2+e−1
\qquad ③若 − a ≥ e 2 -a\geq e^2 −a≥e2,即 a ≤ − e 2 a\leq -e^2 a≤−e2,则 f ( x ) f(x) f(x)在 [ e , e 2 ] [e,e^2] [e,e2]上为减函数
\qquad 当 x = e x=e x=e时, f ( x ) f(x) f(x)取最大值
\qquad 所以 f ( e ) ≤ e − 1 f(e)\leq e-1 f(e)≤e−1时满足条件,即 e + a ≤ e − 1 e+a\leq e-1 e+a≤e−1, a ≤ − 1 a\leq -1 a≤−1
\qquad 所以 a ≤ − e 2 a\leq -e^2 a≤−e2
\qquad 综上所述, a a a的取值范围是 ( − ∞ , − e 2 + e − 1 2 ] (-\infty,\dfrac{-e^2+e-1}{2}] (−∞,2−e2+e−1]
总结
此题用到了导数求函数的单调性与极值的知识点来解题,通过分类讨论求解,是比较常规的题型。