导数大题练习

已知函数 f ( x ) = a ln ⁡ x − 1 x f(x)=a\ln x-\dfrac 1x f(x)=alnxx1 a ∈ R a\in R aR
(1)若曲线 y = f ( x ) y=f(x) y=f(x)在点 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线与直线 x + 2 y = 0 x+2y=0 x+2y=0垂直,求 a a a的值
(2)求函数 f ( x ) f(x) f(x)的单调区间
(3)当 a = 1 a=1 a=1,且 x ≥ 2 x\geq2 x2时,证明: f ( x − 1 ) ≤ 2 x − 5 f(x-1)\leq 2x-5 f(x1)2x5

解:
\qquad (1)函数 f ( x ) f(x) f(x)的定义域为 ( 0 , + ∞ ) (0,+\infty) (0,+) f ′ ( x ) = 1 x + 1 x 2 f'(x)=\dfrac 1x+\dfrac{1}{x^2} f(x)=x1+x21

\qquad 因为曲线 y = f ( x ) y=f(x) y=f(x) ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线与直线 x + 2 y = 0 x+2y=0 x+2y=0垂直

\qquad 所以 f ′ ( 1 ) = a + 1 = 2 f'(1)=a+1=2 f(1)=a+1=2,即 a = 1 a=1 a=1

\qquad (2) f ′ ( x ) = a x + 1 x 2 f'(x)=\dfrac{ax+1}{x^2} f(x)=x2ax+1

\qquad a ≥ 0 a\geq 0 a0时,在 f ( x ) f(x) f(x)的定义域内, f ′ ( x ) > 0 f'(x)>0 f(x)>0恒成立

\qquad 所以当 a ≥ 0 a\geq 0 a0时, f ( x ) f(x) f(x) ( 0 , + ∞ ) (0,+\infty) (0,+)上单调递增

\qquad a < 0 a<0 a<0时,在 x = − 1 a x=-\dfrac 1a x=a1 f ′ ( x ) = 0 f'(x)=0 f(x)=0

\qquad x ∈ ( 0 , − 1 a ) x\in(0,-\dfrac 1a) x(0,a1)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ( x ) f(x) f(x)单调递增

\qquad x ∈ ( − 1 a , + ∞ ) x\in(-\dfrac 1a,+\infty) x(a1,+)时, f ( x ) < 0 f(x)<0 f(x)<0 f ( x ) f(x) f(x)单调递减

\qquad 所以 a < 0 a<0 a<0时, f ( x ) f(x) f(x) ( 0 , − 1 a ] (0,-\dfrac 1a] (0,a1]上单调递增,在 [ − 1 a , + ∞ ) [-\dfrac 1a,+\infty) [a1,+)上单调递减

\qquad (3)当 a = 1 a=1 a=1,且 x ≥ 2 x\geq 2 x2时, f ( x − 1 ) = ln ⁡ ( x − 1 ) − 1 x − 1 f(x-1)=\ln(x-1)-\dfrac{1}{x-1} f(x1)=ln(x1)x11

\qquad g ( x ) = ln ⁡ ( x − 1 ) − 1 x − 1 − 2 x + 5 g(x)=\ln(x-1)-\dfrac{1}{x-1}-2x+5 g(x)=ln(x1)x112x+5

g ′ ( x ) = 1 x − 1 + 1 ( x − 1 ) 2 − 2 = − ( 2 x − 1 ) ( x − 2 ) ( x − 1 ) 2 \qquad g'(x)=\dfrac{1}{x-1}+\dfrac{1}{(x-1)^2}-2=-\dfrac{(2x-1)(x-2)}{(x-1)^2} g(x)=x11+(x1)212=(x1)2(2x1)(x2)

\qquad x > 2 x>2 x>2时, g ′ ( x ) < 0 g'(x)<0 g(x)<0,所以 g ( x ) g(x) g(x) [ 2 , + ∞ ) [2,+\infty) [2,+)上单调递减

\qquad 因为 g ( 2 ) = 0 g(2)=0 g(2)=0,所以 g ( x ) ≤ 0 g(x)\leq 0 g(x)0

\qquad ln ⁡ ( x − 1 ) − 1 x − 1 − 2 x + 5 ≤ 0 \ln(x-1)-\dfrac{1}{x-1}-2x+5\leq 0 ln(x1)x112x+50

\qquad 所以 a = 1 a=1 a=1 x ≥ 2 x\geq 2 x2时, f ( x − 1 ) ≤ 2 x − 5 f(x-1)\leq 2x-5 f(x1)2x5


总结

本题考查了导数求函数的单调性与极值的知识点,比较基础。

内容概要:本文详细介绍了CCF-GESP认证的学习资源与知识点指南,分为官方资源与平台、知识点学习与解析、备考策略与工具、实战项目与进阶资源以及学习工具推荐五个部分。官方资源包括CCF数字图书馆提供的免费真题库、一站式学习平台和GESP官网的最新真题下载及考试环境说明。知识点学习部分涵盖Python、C++和图形化编程(Scratch)的核心内容与实战案例。备考策略方面,提出了基础、强化和冲刺三个阶段的分阶段计划,并强调了在线题库模拟测试与社区交流的重要性。实战项目与进阶资源则为不同编程语言提供了具体的应用场景,如Python的智能客服机器人和C++的并行编程与嵌入式开发。最后,推荐了多种学习工具,如代码编辑器VS Code、模拟考试平台和社区支持渠道。 适合人群:准备参加CCF-GESP认证考试的考生,特别是对Python、C++或Scratch编程语言有兴趣的学习者。 使用场景及目标:①帮助考生系统化地学习官方资源,熟悉考试形式和内容;②通过分阶段的备考策略,提高应试能力和编程技能;③利用实战项目和进阶资源,增强实际编程经验和解决复杂问题的能力。 阅读建议:建议考生按照文章中的分阶段备考策略逐步推进学习进度,充分利用官方提供的资源进行练习和模拟测试,并积极参与社区交流以获取更多备考经验和疑难解答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值