已知函数
f
(
x
)
=
a
ln
x
−
1
x
f(x)=a\ln x-\dfrac 1x
f(x)=alnx−x1,
a
∈
R
a\in R
a∈R
(1)若曲线
y
=
f
(
x
)
y=f(x)
y=f(x)在点
(
1
,
f
(
1
)
)
(1,f(1))
(1,f(1))处的切线与直线
x
+
2
y
=
0
x+2y=0
x+2y=0垂直,求
a
a
a的值
(2)求函数
f
(
x
)
f(x)
f(x)的单调区间
(3)当
a
=
1
a=1
a=1,且
x
≥
2
x\geq2
x≥2时,证明:
f
(
x
−
1
)
≤
2
x
−
5
f(x-1)\leq 2x-5
f(x−1)≤2x−5
解:
\qquad
(1)函数
f
(
x
)
f(x)
f(x)的定义域为
(
0
,
+
∞
)
(0,+\infty)
(0,+∞),
f
′
(
x
)
=
1
x
+
1
x
2
f'(x)=\dfrac 1x+\dfrac{1}{x^2}
f′(x)=x1+x21
\qquad 因为曲线 y = f ( x ) y=f(x) y=f(x)在 ( 1 , f ( 1 ) ) (1,f(1)) (1,f(1))处的切线与直线 x + 2 y = 0 x+2y=0 x+2y=0垂直
\qquad 所以 f ′ ( 1 ) = a + 1 = 2 f'(1)=a+1=2 f′(1)=a+1=2,即 a = 1 a=1 a=1
\qquad (2) f ′ ( x ) = a x + 1 x 2 f'(x)=\dfrac{ax+1}{x^2} f′(x)=x2ax+1
\qquad 当 a ≥ 0 a\geq 0 a≥0时,在 f ( x ) f(x) f(x)的定义域内, f ′ ( x ) > 0 f'(x)>0 f′(x)>0恒成立
\qquad 所以当 a ≥ 0 a\geq 0 a≥0时, f ( x ) f(x) f(x)在 ( 0 , + ∞ ) (0,+\infty) (0,+∞)上单调递增
\qquad 当 a < 0 a<0 a<0时,在 x = − 1 a x=-\dfrac 1a x=−a1时 f ′ ( x ) = 0 f'(x)=0 f′(x)=0
\qquad 当 x ∈ ( 0 , − 1 a ) x\in(0,-\dfrac 1a) x∈(0,−a1)时, f ′ ( x ) > 0 f'(x)>0 f′(x)>0, f ( x ) f(x) f(x)单调递增
\qquad 当 x ∈ ( − 1 a , + ∞ ) x\in(-\dfrac 1a,+\infty) x∈(−a1,+∞)时, f ( x ) < 0 f(x)<0 f(x)<0, f ( x ) f(x) f(x)单调递减
\qquad 所以 a < 0 a<0 a<0时, f ( x ) f(x) f(x)在 ( 0 , − 1 a ] (0,-\dfrac 1a] (0,−a1]上单调递增,在 [ − 1 a , + ∞ ) [-\dfrac 1a,+\infty) [−a1,+∞)上单调递减
\qquad (3)当 a = 1 a=1 a=1,且 x ≥ 2 x\geq 2 x≥2时, f ( x − 1 ) = ln ( x − 1 ) − 1 x − 1 f(x-1)=\ln(x-1)-\dfrac{1}{x-1} f(x−1)=ln(x−1)−x−11
\qquad 令 g ( x ) = ln ( x − 1 ) − 1 x − 1 − 2 x + 5 g(x)=\ln(x-1)-\dfrac{1}{x-1}-2x+5 g(x)=ln(x−1)−x−11−2x+5
g ′ ( x ) = 1 x − 1 + 1 ( x − 1 ) 2 − 2 = − ( 2 x − 1 ) ( x − 2 ) ( x − 1 ) 2 \qquad g'(x)=\dfrac{1}{x-1}+\dfrac{1}{(x-1)^2}-2=-\dfrac{(2x-1)(x-2)}{(x-1)^2} g′(x)=x−11+(x−1)21−2=−(x−1)2(2x−1)(x−2)
\qquad 当 x > 2 x>2 x>2时, g ′ ( x ) < 0 g'(x)<0 g′(x)<0,所以 g ( x ) g(x) g(x)在 [ 2 , + ∞ ) [2,+\infty) [2,+∞)上单调递减
\qquad 因为 g ( 2 ) = 0 g(2)=0 g(2)=0,所以 g ( x ) ≤ 0 g(x)\leq 0 g(x)≤0
\qquad 即 ln ( x − 1 ) − 1 x − 1 − 2 x + 5 ≤ 0 \ln(x-1)-\dfrac{1}{x-1}-2x+5\leq 0 ln(x−1)−x−11−2x+5≤0
\qquad 所以 a = 1 a=1 a=1, x ≥ 2 x\geq 2 x≥2时, f ( x − 1 ) ≤ 2 x − 5 f(x-1)\leq 2x-5 f(x−1)≤2x−5
总结
本题考查了导数求函数的单调性与极值的知识点,比较基础。