我们都知道 ( sin x ) ′ = cos x (\sin x)'=\cos x (sinx)′=cosx, ( cos x ) ′ = − sin x (\cos x)'=-\sin x (cosx)′=−sinx,但是为什么呢?
sin x \sin x sinx的导数
( sin x ) ′ = lim Δ x → 0 sin ( x + Δ x ) − sin x Δ x (\sin x)'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin(x+\Delta x)-\sin x}{\Delta x} (sinx)′=Δx→0limΔxsin(x+Δx)−sinx
根据三角函数公式中的和差公式可得
原式 = lim Δ x → 0 sin x cos Δ x + sin Δ x cos x − sin x Δ x = lim Δ x → 0 sin x ( cos Δ x − 1 ) Δ x + lim Δ x → 0 sin Δ x cos x Δ x =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\cos\Delta x+\sin \Delta x\cos x-\sin x}{\Delta x}=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x(\cos\Delta x-1)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin \Delta x\cos x}{\Delta x} =Δx→0limΔxsinxcosΔx+sinΔxcosx−sinx=Δx→0limΔxsinx(cosΔx−1)+Δx→0limΔxsinΔxcosx
由无穷小替换可得,当 x → 0 x\rightarrow 0 x→0时, 1 − cos x ∼ 1 2 x 2 1-\cos x\sim\dfrac12 x^2 1−cosx∼21x2, sin x ∼ x \sin x\sim x sinx∼x
所以原式 = − lim Δ x → 0 sin x × 1 2 Δ x + lim Δ x → 0 cos x = − 0 + cos x = cos x =-\lim\limits_{\Delta x\rightarrow 0}\sin x\times \dfrac 12\Delta x+\lim\limits_{\Delta x\rightarrow 0}\cos x=-0+\cos x=\cos x =−Δx→0limsinx×21Δx+Δx→0limcosx=−0+cosx=cosx
cos x \cos x cosx的导数
与 sin x \sin x sinx的导数类似,证明如下。
cos x = lim Δ x → 0 cos ( x + Δ x ) − cos x Δ x \cos x=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos(x+\Delta x)-\cos x}{\Delta x} cosx=Δx→0limΔxcos(x+Δx)−cosx
= lim Δ x → 0 cos x cos Δ x − sin x sin Δ x − cos x Δ x \quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x\cos \Delta x-\sin x\sin \Delta x-\cos x}{\Delta x} =Δx→0limΔxcosxcosΔx−sinxsinΔx−cosx
= lim Δ x → 0 cos x ( cos Δ x − 1 ) Δ x − lim Δ x → 0 sin x sin Δ x Δ x \quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x(\cos \Delta x-1)}{\Delta x}-\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\sin \Delta x}{\Delta x} =Δx→0limΔxcosx(cosΔx−1)−Δx→0limΔxsinxsinΔx
= − lim Δ x → 0 1 2 cos x Δ x − lim Δ x → 0 sin x \quad\quad \ =-\lim\limits_{\Delta x\rightarrow 0}\dfrac 12\cos x\Delta x-\lim\limits_{\Delta x\rightarrow 0}\sin x =−Δx→0lim21cosxΔx−Δx→0limsinx
= − 0 − sin x \quad\quad \ =-0-\sin x =−0−sinx
= − sin x \quad\quad \ =-\sin x =−sinx
所以 ( cos x ) ′ = sin x (\cos x)'=\sin x (cosx)′=sinx