sin x和cos x的导数

我们都知道 ( sin ⁡ x ) ′ = cos ⁡ x (\sin x)'=\cos x (sinx)=cosx ( cos ⁡ x ) ′ = − sin ⁡ x (\cos x)'=-\sin x (cosx)=sinx,但是为什么呢?

sin ⁡ x \sin x sinx的导数

( sin ⁡ x ) ′ = lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x (\sin x)'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin(x+\Delta x)-\sin x}{\Delta x} (sinx)=Δx0limΔxsin(x+Δx)sinx

根据三角函数公式中的和差公式可得

原式 = lim ⁡ Δ x → 0 sin ⁡ x cos ⁡ Δ x + sin ⁡ Δ x cos ⁡ x − sin ⁡ x Δ x = lim ⁡ Δ x → 0 sin ⁡ x ( cos ⁡ Δ x − 1 ) Δ x + lim ⁡ Δ x → 0 sin ⁡ Δ x cos ⁡ x Δ x =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\cos\Delta x+\sin \Delta x\cos x-\sin x}{\Delta x}=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x(\cos\Delta x-1)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin \Delta x\cos x}{\Delta x} =Δx0limΔxsinxcosΔx+sinΔxcosxsinx=Δx0limΔxsinx(cosΔx1)+Δx0limΔxsinΔxcosx

由无穷小替换可得,当 x → 0 x\rightarrow 0 x0时, 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x\sim\dfrac12 x^2 1cosx21x2 sin ⁡ x ∼ x \sin x\sim x sinxx

所以原式 = − lim ⁡ Δ x → 0 sin ⁡ x × 1 2 Δ x + lim ⁡ Δ x → 0 cos ⁡ x = − 0 + cos ⁡ x = cos ⁡ x =-\lim\limits_{\Delta x\rightarrow 0}\sin x\times \dfrac 12\Delta x+\lim\limits_{\Delta x\rightarrow 0}\cos x=-0+\cos x=\cos x =Δx0limsinx×21Δx+Δx0limcosx=0+cosx=cosx


cos ⁡ x \cos x cosx的导数

sin ⁡ x \sin x sinx的导数类似,证明如下。

cos ⁡ x = lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x ) − cos ⁡ x Δ x \cos x=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos(x+\Delta x)-\cos x}{\Delta x} cosx=Δx0limΔxcos(x+Δx)cosx

  = lim ⁡ Δ x → 0 cos ⁡ x cos ⁡ Δ x − sin ⁡ x sin ⁡ Δ x − cos ⁡ x Δ x \quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x\cos \Delta x-\sin x\sin \Delta x-\cos x}{\Delta x}  =Δx0limΔxcosxcosΔxsinxsinΔxcosx

  = lim ⁡ Δ x → 0 cos ⁡ x ( cos ⁡ Δ x − 1 ) Δ x − lim ⁡ Δ x → 0 sin ⁡ x sin ⁡ Δ x Δ x \quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x(\cos \Delta x-1)}{\Delta x}-\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\sin \Delta x}{\Delta x}  =Δx0limΔxcosx(cosΔx1)Δx0limΔxsinxsinΔx

  = − lim ⁡ Δ x → 0 1 2 cos ⁡ x Δ x − lim ⁡ Δ x → 0 sin ⁡ x \quad\quad \ =-\lim\limits_{\Delta x\rightarrow 0}\dfrac 12\cos x\Delta x-\lim\limits_{\Delta x\rightarrow 0}\sin x  =Δx0lim21cosxΔxΔx0limsinx

  = − 0 − sin ⁡ x \quad\quad \ =-0-\sin x  =0sinx

  = − sin ⁡ x \quad\quad \ =-\sin x  =sinx

所以 ( cos ⁡ x ) ′ = sin ⁡ x (\cos x)'=\sin x (cosx)=sinx

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值