题目描述
有一个长度为 n n n的序列 a a a,现在对数列进行一些变换,每次可以选择一对 i , j i,j i,j,满足 1 ≤ i < j ≤ n 1\leq i < j\leq n 1≤i<j≤n且 a i > a j a_i>a_j ai>aj,然后将 a i a_i ai和 a j a_j aj交换。如果序列 b b b可以由序列 a a a经过若干次变换得到,那么称 b b b是可达的。求有多少种不同的可达的序列,输出答案模 1000000007 1000000007 1000000007。
输入格式
第一行一个数 n n n,接下来一行 n n n个数,分别为 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an,保证这是 n n n的一个排列。
输出格式
输出一个整数,表示答案对 1000000007 1000000007 1000000007取模后的值。
样例输入
4
2 4 1 3
样例输出
8
样例解释
可达的排列有 2413, 2314, 2143, 2134, 1423, 1243, 1324, 1234。
数据范围
对于
20
%
20\%
20%的数据,
1
≤
n
≤
10
1\leq n\leq 10
1≤n≤10
对于
40
%
40\%
40%的数据,
1
≤
n
≤
15
1\leq n\leq 15
1≤n≤15
对于
100
%
100\%
100%的数据,
1
≤
n
≤
20
1\leq n\leq 20
1≤n≤20
题解
我们来考虑一下序列可达的条件是什么。
如果这不是 n n n的排列,而是 01 01 01序列的话,那么条件很显然:对于任意的 i i i,序列 b b b从右往左的第 i i i个 1 1 1都位于序列 a a a从右往左的第 i i i个 1 1 1的右边(不一定严格,可以在同一个位置),那么 a a a就可以到达 b b b。
对于一个排列 a a a以及一个数 k k k,把 a a a中大于等于 k k k的数标为 1 1 1,剩下的数标为 0 0 0,那么就能得到一个 01 01 01序列。如果对于任意的 k k k,排列 a a a对应的 01 01 01序列都能够到达排列 b b b,那么排列 a a a就能到达排列 b b b。
如果排列 b b b不满足条件,那么排列 a a a一定不能到达排列 b b b。但为什么只要排列 b b b满足条件,排列 a a a就一定能够到达排列 b b b呢?
我们可以让 i i i从 1 1 1到 n n n,每次将数字 i i i移到目标位置,令当前位置为 l l l,目标位置为 r r r,当前 ( l , r ] (l,r] (l,r]区间的最大数字为 a j a_j aj,则让 a l a_l al和 a j a_j aj交换即可。
那要怎么实现呢?
设 f i , j f_{i,j} fi,j表示当前从大到小放到第 i i i个数字,且按大于等于 i i i为 1 1 1,小于 i i i为 0 0 0来构成的 01 01 01串为 j j j,此时的方案数。要保证在枚举过程中 01 01 01串要满足上面的条件。一开始是全 0 0 0的 01 01 01串,答案是全 1 1 1的 01 01 01串。
时间复杂度为 O ( n ⋅ 2 n ) O(n \cdot 2^n) O(n⋅2n)。
code
#include<bits/stdc++.h>
using namespace std;
int n,tot=0,a[25],d[2000005],l[2000005],r[2000005];
long long f[25][1<<20];
long long mod=1000000007;
void add(int xx,int yy){
l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
int gt(int s){
int re=0;
while(s){
re+=s&1;s>>=1;
}
return re;
}
bool pd(int s,int t){
int w=0;
for(int i=n;i>=1;i--){
if(t&(1<<i-1)) ++w;
if(a[i]>=s) --w;
if(w<0) return 0;
}
return 1;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int s=0;s<(1<<n);s++){
add(gt(s),s);
}
f[n+1][0]=1;
for(int s=n;s>=1;s--){
for(int i=r[n-s+1];i;i=l[i]){
if(!pd(s,d[i])) continue;
for(int j=1;j<=n;j++){
if(d[i]&(1<<j-1)){
f[s][d[i]]=(f[s][d[i]]+f[s+1][d[i]^(1<<j-1)])%mod;
}
}
}
}
printf("%lld",f[1][(1<<n)-1]);
return 0;
}