牛顿-莱布尼茨公式的运用

前置知识:牛顿-莱布尼茨公式

题1: f f f [ a , b ] [a,b] [a,b]上连续, F ( x ) = ∫ a x ( x − t ) f ( t ) d t F(x)=\int_a^x(x-t)f(t)dt F(x)=ax(xt)f(t)dt,求 F ′ ′ ( x ) F''(x) F′′(x)

解:
F ( x ) = x ∫ a x f ( t ) d t − ∫ a x t f ( t ) d t F(x)=x\int_a^xf(t)dt-\int_a^xtf(t)dt F(x)=xaxf(t)dtaxtf(t)dt

所以

F ′ ( x ) = ∫ a x f ( t ) d t + x f ( x ) − x f ( x ) = ∫ a x f ( t ) d t F'(x)=\int_a^xf(t)dt+xf(x)-xf(x)=\int_a^xf(t)dt F(x)=axf(t)dt+xf(x)xf(x)=axf(t)dt

由此可得

F ′ ′ ( x ) = f ( x ) F''(x)=f(x) F′′(x)=f(x)


题2: 计算 lim ⁡ x → + ∞ ( ∫ 0 x e t 2 d t ) 2 ∫ 0 x e 2 t 2 d t \lim\limits_{x\to +\infty}\dfrac{(\int_0^xe^{t^2}dt)^2}{\int_0^xe^{2t^2}dt} x+lim0xe2t2dt(0xet2dt)2

解:
\qquad 运用洛必达法则

\qquad 原式 = lim ⁡ x → + ∞ 2 e x 2 ∫ 0 x e t 2 d t e 2 x 2 = lim ⁡ x → + ∞ 2 ∫ 0 x e t 2 d t e x 2 = lim ⁡ x → + ∞ 2 e x 2 2 x e x 2 = lim ⁡ x → + ∞ 1 x = 0 =\lim\limits_{x\to +\infty}\dfrac{2e^{x^2}\int_0^xe^{t^2}dt}{e^{2x^2}}=\lim\limits_{x\to +\infty}\dfrac{2\int_0^xe^{t^2}dt}{e^{x^2}}=\lim\limits_{x\to +\infty}\dfrac{2e^{x^2}}{2xe^{x^2}}=\lim\limits_{x\to +\infty}\dfrac 1x=0 =x+lime2x22ex20xet2dt=x+limex220xet2dt=x+lim2xex22ex2=x+limx1=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值